C O M M U N I C A T I O N S
Scheme 2. Proposed Mechanism for the Synthesis of Annulated
Indoles
bromoalkyl indole. We are currently exploring the application of
this methodology to the synthesis of other heterocyclic compounds.
Acknowledgment. We gratefully acknowledge the financial
support of the Natural Sciences and Engineering Research Council
(NSERC) of Canada, the Merck Frosst Centre for Therapeutic
Research for an Industrial Research Chair, and the University of
Toronto. C.B. thanks Le Ministe`re des Affaires Etrange`res Franc¸ais
for a Bourse Lavoisier postdoctoral fellowship.
Supporting Information Available: Experimental procedures and
spectroscopic characterization of all new products. This material is
References
(1) (a) Stanforth, S. P. Tetrahedron 1998, 54, 263-303. (b) Hassan, J.;
Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. ReV. 2002, 102,
1359-1469. (c) Anastasia, L.; Negishi, E. In Handbook of Organopal-
ladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New
York, 2002; pp 311-334.
(2) For recent reviews, see: (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38,
1698-1712. (b) Miura, M.; Nomura, M. Top. Curr. Chem. 2002, 219,
211-241. (c) Wolfe, J. P.; Thomas, J. S. Curr. Org. Chem. 2005, 9, 625-
655. For selected recent examples on palladium-catalyzed direct arylation,
see: (d) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. J.
Org. Chem. 2005, 70, 3997-4005. (e) Campeau, L.-C.; Parisien, M.;
Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126, 9186-9187. (f)
Zeevaart, J. G.; Parkinson, C. J.; de Koning, C. B. Tetrahedron Lett. 2004,
45, 4261-4264. (g) Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.;
Nomura, M. Tetrahedron 2003, 59, 5685-5689. (h) Nifant’ev, I. E.;
Sitnikov, A. A.; Andriukhova, N. V.; Laishevtsev, I. P.; Luzikov, Y. N.
Tetrahedron Lett. 2002, 43, 3213-3215. (i) Hamann, B. C.; Hartwig, J.
F. J. Am. Chem. Soc. 1997, 119, 12382-12383.
(3) (a) Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73-103. (b) Payack,
J. F.; Vazquez, E.; Matty, L.; Kress, M. H.; McNamara, J. J. Org. Chem.
2005, 70, 175-178. For select examples of annulated indoles, see: (c)
Kozikowski, A. P.; Ma, D.; Brewer, J.; Sun, S.; Costa, E.; Romeo, E.;
Guidotti, A. J. Med. Chem. 1993, 36, 2908-2920. (d) Gastpar, R.;
Goldbrunner, M.; Marko, D.; von Angerer, E. J. Med. Chem. 1998, 41,
4965-4972. (e) Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L.-K. J. Med.
Chem. 2000, 43, 1050-1061.
(4) For intermolecular palladium-catalyzed direct arylation of indoles, see:
(a) Akita, Y.; Itagaki, Y.; Takizawa, S.; Ohta, A. Chem. Pharm. Bull.
1989, 37, 1477-1480. (b) Lane, B. S.; Sames, D. Org. Lett. 2004, 6,
2897-2900. (c) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem.
Soc. 2005, 127, 8050-8057. For intramolecular palladium-catalyzed direct
arylation of indoles, see: (d) Kozikowski, A. P.; Ma, D. Tetrahedron
Lett. 1991, 32, 3317-3320. (e) Grigg, R.; Sridharan, V.; Stevenson, P.;
Sukirthalingam, S.; Worakun, T. Tetrahedron 1990, 46, 4003-4018.
(5) (a) Catellani, M.; Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. Engl.
1997, 36, 119-122. (b) Catellani, M.; Mealli, C.; Motti, E.; Paoli, P.;
Perez-Carreno, E.; Pregosin, P. S. J. Am. Chem. Soc. 2002, 124, 4336-
4346. (c) Catellani, M. Synlett 2003, 298-313.
(6) (a) Lautens, M.; Piguel, S. Angew. Chem., Int. Ed. 2000, 39, 1045-1046.
(b) Lautens, M.; Paquin, J.-F.; Piguel, S.; Dahlmann, M. J. Org. Chem.
2001, 66, 8127-8134. (c) Lautens, M.; Paquin, J.-F.; Piguel, S. J. Org.
Chem. 2002, 67, 3972-3974. (d) Pache, S.; Lautens, M. Org. Lett. 2003,
5, 4827-4830. (e) Alberico, D.; Paquin, J.-F.; Lautens, M. Tetrahedron
2005, 61, 6283-6297.
reacted with bromoalkyl indole 17. Ester, nitro, and N-methyl tosyl
substituents gave good to excellent yields (entries 7-9). Having a
N-methyl tosyl substituent as the ortho blocking group afforded
22 in 76% yield (entry 10). However, when this substituent was
placed at position 5 of the aryl iodide, 24 was obtained in only
38% yield (entry 11), presumably due to steric effects.
The ortho alkylation likely proceeds through the mechanism
previously described by Catellani5a and is illustrated in Scheme 2.
Intermediate 27 arises from the reductive elimination of the
proposed Pd(IV) complex 25 to give 26, followed by expulsion of
norbornene. Heteroaryl-aryl coupling of 27 via C-H functional-
ization of the indole C-2 hydrogen follows to provide annulated
indole 6.
Several mechanisms have been suggested for C-H functional-
ization R to the heteroatom in heteroaromatic compounds.4c,7
Possible pathways for the intramolecular C-2 indole arylation
include (1) a Heck-type process4d,e involving a carbopalladation
followed by an atypical anti-â-hydride elimination,8 (2) a direct
C-2 palladation via a nonelectrophilic pathway,9 and (3) an
electrophilic substitution at the C-3 position, followed by a C-3 to
C-2 palladium migration and reductive elimination.4c Direct C-2
palladation via a nonelectrophilic pathway has been reported but
requires a coordinating heteroatom on the N- or C-3 substituent as
a directing group.9 Sames recently reported mechanistic investiga-
tions for the palladium-catalyzed intermolecular C-2 arylation of
indoles and concluded through kinetic studies and a Hammett plot
that the most likely pathway is an electrophilic substitution at the
C-3 position, followed by a C-3 to C-2 palladium migration.4c
Although this may be the most probable mechanism for the
intermolecular C-2 arylation, we cannot exclude a Heck-type
process for the intramolecular reaction.
(7) (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull.
Chem. Soc. Jpn. 1998, 71, 467-473. (b) Fishwick, C. W. G.; Grigg, R.;
Sridharan, V.; Virica, J. Tetrahedron 2003, 59, 4451-4468. (c) Glover,
B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett.
2003, 5, 301-304. (d) Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, S.;
Javadi, G. J.; Cai, D.; Larsen, R. D. Org. Lett. 2003, 5, 4835-4837. (e)
Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V.
Org. Lett. 2004, 6, 1159-1162.
(8) For some recent examples of anti-â-hydride elimination, see: (a) Ikeda,
M.; El Bialy, S. A. A.; Yakura, T. Heterocycles 1999, 51, 1957-1970.
(b) Shea, K. M.; Lee, K. L.; Danheiser, R. L. Org. Lett. 2000, 2, 2353-
2356. (c) Maeda, K.; Farrington, E. J.; Galardon, E.; John, B. D.; Brown,
J. M. AdV. Synth. Catal. 2002, 344, 104-109. (d) Lautens, M.; Fang,
Y.-Q. Org. Lett. 2003, 5, 3679-3682.
(9) (a) Tollari, S.; Demartin, F.; Cenini, S.; Palmisano, G.; Raimondi, P. J.
Organomet. Chem. 1997, 527, 93-102. (b) Motoyama, T.; Shimazaki,
Y.; Yajima, T.; Nakabayashi, Y.; Naruta, Y.; Yamauchi, O. J. Am. Chem.
Soc. 2004, 126, 7378-7385. (c) Capito, E.; Brown, J. M.; Ricci, A. Chem.
Commun. 2005, 25, 1854-1856.
In summary, we have developed a new approach to highly
substituted six- and seven-membered ring annulated indoles, where
an alkyl-aryl bond and a heteroaryl-aryl bond are formed in one
pot. This process involves a norbornene-mediated tandem ortho
alkylation/C-H functionalization between an aryl iodide and a
JA054472V
9
J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005 13149