Published on Web 09/30/2005
Temperature-Sensitive Dendritic Micelles
Sivakumar V. Aathimanikandan, Elamprakash N. Savariar, and S. Thayumanavan*
Contribution from the Department of Chemistry, UniVersity of Massachusetts,
Amherst, Massachusetts 01003
Received July 8, 2005; E-mail: thai@chem.umass.edu
Abstract: Syntheses up to three generations have been achieved of biaryl-based amphiphilic dendrons
with a charge-neutral pentaethylene glycol as the hydrophilic part and a decyl chain as the hydrophobic
part. Studies on the temperature-dependent characteristics revealed that these dendrons exhibit a
generation-dependent lower critical solution temperature (LCST). This behavior is attributed to the
combination of the amphipathic nature of the hydrophilic pentaethylene glycol side chain and dendritic
effect. Interestingly, this biaryl-based scaffold also maintains the ability to form a micelle-like assembly in
polar solvents and an inverted micelle-like assembly in apolar solvents. Polarity of the dendritic interior
was investigated using dye-based microenvironment studies. The aggregation behavior of these micelles
was analyzed by fluorescence spectroscopy and dynamic light scattering. Critical micelle concentrations
(CMC) of these assemblies were investigated using fluorescence excitation spectra of the sequestered
guest molecule, pyrene.
Introduction
variety of physical properties in dendritic structures through
functional group modifications at the core, branches, and the
The globular shape, excellent control over polydispersity, and
the ability to display a high density of functionalities on its
surface are among the factors that have made dendrimers
attractive scaffolds for a variety of applications.1 Examples of
where dendrimers have been explored for applications include
drug delivery,2 gene therapy,3 magnetic resonance imaging,4
catalysis,5 and light-harvesting antennae.6 The diversity of these
applications arises from the fact that one was able to instill a
periphery of these highly branched macromolecules. Incorpora-
tion of stimuli-sensitive character into dendrimers7 could
significantly expand the scope of these molecules in applications
such as the ones mentioned above. A feature that is significantly
under-explored with dendrimers involves temperature-sensitive
behavior.8 Macromolecules with temperature-sensitive properties
have advantages in applications such as controlled drug release,9
molecular separations,10 and tissue culture substrates.11 We have
been interested in eliciting thermally responsive properties into
our amphiphilic dendrimers,12 since such a system combines
the complementary advantages of temperature sensitivity and
(1) (a) Fre´chet, J. M. J.; Tomalia, D. A. In Dendrimers and Other Dendritic
Polymers; John Wiley & Sons: New York, 2001. (b) Newkome, G. R.;
Moorefield, C. N.; Vo¨gtle, F. Dendrimers and Dendrons: Concepts,
Syntheses, Applications, 2nd ed.; Wiley-VCH: Weinheim, 2001. (c)
Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665.
(d) Fre´chet, J. M. J. Science 1994, 263, 1710. (e) Tomalia, D. A.; Fre´chet,
J. M. J. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2719. (f) Majoral,
J.-P.; Caminade, A.-N. Acc. Chem. Res. 2004, 37, 341.
(2) (a) Duncan, R. Nat. ReV. Drug DiscoVery 2003, 2, 347. (b) Gillies, E. R.;
Fre´chet, J. M. J. Drug DiscoVery Today 2005, 10, 35. (c) Aulenta, F.; Hayes,
W.; Rannard, S. Eur. Polym. J. 2003, 39, 1741. (d) Cloninger, M. J. Curr.
Opin. Chem. Biol. 2002, 6, 742. (e) Boas, U.; Heegaard, P. M. H. Chem.
Soc. ReV. 2004, 33, 43. (f) Zhang, W.; Jiang, J.; Qin, C.; Thomson, L. M.;
Pe´rez, L. M.; Parrish, A. R.; Safe, S. H.; Simanek, E. E. Supramol. Chem.
2003, 15, 607. (g) Ambade, A. V.; Savariar, E. N.; Thayumanavan, S. Mol.
Pharm. 2005, 2, 264.
(6) (a) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996, 118,
9635. (b) Adronov, A.; Fre´chet, J. M. J. Chem. Commun. 2000, 1701. (c)
Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazaki, I. Angew. Chem., Int. Ed.
2001, 40, 3194. (d) Balzani, V.; Ceroni, P.; Maestri, M.; Vicinelli, V. Curr.
Opin. Chem. Biol. 2003, 7, 657. (e) Imahori, H. J. Phys. Chem. B 2004,
108, 6130. (f) Thomas, K. R. J.; Thompson, A. L.; Sivakumar, A. V.;
Bardeen, C. J.; Thayumanavan, S. J. Am. Chem. Soc. 2005, 127, 373 and
references therein. (g) Nantalaksakul, A.; Reddy, D. R.; Bardeen, C. J.;
Thayumanavan, S. Photosynth. Res. In press.
(7) For example, see: (a) Jiang, D.-L.; Aida, T. Nature 1997, 338, 454. (b)
Sebastia´n, R.-M.; Blias, J.-C.; Caminade, A.-M.; Majoral, J.-P. Chem. Eur.
J. 2002, 8, 2172. (c) Dirksen, A.; Zuidema, E.; Williams, R. M.; De Cola,
L.; Kauffmann, C.; Vo¨gtle. F.; Roque, A.; Pina, E. Macromolecules 2002,
35, 2743. (d) Kojima, C.; Haba, Y.; Fukui, T.; Kono, K.; Takagishi, T.
Macromolecules 2003, 36, 2183. (e) Gillies, E. R.; Jonsson, T. B.; Fre´chet,
J. M. J. J. Am. Chem. Soc. 2004, 126, 1193.
(3) (a) Haensler, J.; Szoka, F. C. Bioconjugate Chem. 1993, 4, 372. (b)
Bielinska, A.; Kukowska-Latallo, J. F.; Johnson, J.; Tomalia, D. A.; Baker,
J. R., Jr. Nucleic Acids Res. 1996, 24, 2176. (c) Loup, C.; Zanta, M.-A.;
Caminade, A.-M.; Majoral, J.-P.; Meunier, B. Chem. Eur. J. 1999, 5, 3644.
(d) Joester, D.; Losson, M.; Pugin, R.; Heinzelmann, H.; Walter, E.; Merkle,
H. P.; Diederich, F. Angew. Chem., Int. Ed. 2003, 42, 1486.
(4) (a) Kim, Y.; Zimmerman, S. C. Curr. Opin. Chem. Biol. 1998, 2, 733. (b)
Stiriba, S.-E.; Frey, H.; Haag, R. Angew. Chem., Int. Ed. 2002, 41, 1329.
(c) Kobayashi, H.; Brechbiel, M. W. Mol. Imaging 2003, 2, 1.
(8) (a) Haba, Y.; Harada, A.; Takagishi, T.; Kono, K. J. Am. Chem. Soc. 2004,
126, 12760. (b) Hofacker, A. L.; Parquette, J. R. Angew. Chem., Int. Ed.
2005, 44, 1053.
(9) Piskin, E. Int. J. Pharm. 2004, 277, 105 and references therein.
(10) Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. J. Membr. Sci. 1991, 64, 283.
(11) (a) Takezawa, T.; Mori, Y.; Yoshizato, K. Biotechnology 1990, 8, 854. (b)
Nakano, Y. In Function of Polymer Gels; Shima, K., Ed.; CMC: Tokyo,
1999; p 61.
(5) (a) Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van Leeuwen,
P. W. N. M.; Wijkens, P.; Grove, D. M.; van Koten, G. Nature 1994, 372,
659. (b) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991. (c) Oosterom,
G. E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew.
Chem., Int. Ed. 2001, 40, 1828. (d) Schmitzer, A. R.; Franceschi, S.; Perez,
E.; Rico-Lattes, I.; Lattes, A.; Thion, L.; Erad, M.; Vidal, C. J. Am. Chem.
Soc. 2001, 123, 5956. (e) Hecht, S.; Fre´chet, J. M. J. J. Am. Chem. Soc.
2001, 123, 6959.
(12) (a) Vutukuri, D. R.; Basu, S.; Thayumanavan, S. J. Am. Chem. Soc. 2004,
126, 15636. (b) Bharathi, P.; Zhao, H.; Thayumanavan, S. Org. Lett. 2001,
3, 1961.
9
14922
J. AM. CHEM. SOC. 2005, 127, 14922-14929
10.1021/ja054542y CCC: $30.25 © 2005 American Chemical Society