ORGANIC
LETTERS
2006
Vol. 8, No. 20
4629-4632
Chiral Boron Enolate Aldol Additions to
Chiral Aldehydes†
Luiz C. Dias* and Andrea M. Aguilar
Instituto de Qu´ımica, UniVersidade Estadual de Campinas, UNICAMP,
C.P. 6154, CEP 13084-971, Campinas SP, Brazil
Received July 28, 2006
ABSTRACT
We have examined the double-diastereodifferentiating aldol addition reactions of chiral enolborinate 1a with chiral aldehydes leading to the
corresponding aldol adducts with excellent levels of 1,5-anti diastereoselection.
The aldol reaction is one of the most powerful transforma-
tions for the creation of the 1,3-dioxygen relationships in
organic molecules.1 As the resulting aldol adducts resemble
the 1,3-polyol fragments, this reaction has been applied for
the synthesis of a wide variety of natural products with
biological and pharmacological significance.
The incorporation of convergence into the construction of
complex polyketides requires that large fragments must be
joined together at some point in the synthesis. The aldol
reaction provides an attractive method for such a convergent
assembly.2 The key aldol assemblage reactions that join large
fragments with high and predictable levels of stereocontrol
still lack the guidance of refined models and reaction
methodology.3 The use of boron enolates derived from
R-methyl and R-methyl-â-alkoxy methyl ketones for asym-
metric aldol reactions usually give low levels of diastereo-
selectivity when compared with the high selectivities ob-
served with the use of boron enolates prepared from ethyl
ketones.4,5 Usually, reagent control using chiral ligands on
boron is required to obtain useful levels of asymmetric
induction in the addition of boron enolates of R-methyl
ketones to achiral aldehydes.4-6 To gain insight into the
principles that dictate diastereoselectivity in double-stereo-
differentiating7,8 aldol reactions, we have investigated the use
of chiral methyl ketone 1 in boron-mediated aldol reactions
with chiral aldehydes 2-12 (Scheme 1).9 These substrates
were chosen to be representative of the complex fragments
that might be coupled in polyacetate and polypropionate-
(3) Denmark, S. E.; Fujimori, S.; Pham, S. M. J. Org. Chem. 2005, 70,
10823.
(4) (a) Paterson, I.; Goodman, J. M. Tetrahedron Lett. 1989, 30, 997.
(b) Paterson, I.; Florence, G. J. Tetrahedron Lett. 2000, 41, 6935.
(5) An exception is the aldol reaction of â-alkoxy methyl ketones which
proceed with high 1,5-stereoinduction under substrate control: (a) Evans,
D. A.; Coleman, P. J.; Coˆte´, B. J. Org. Chem. 1997, 62, 788. (b) Evans, D.
A.; Trotter, B. W.; Coleman, P. J.; Coˆte´, B.; Dias, L. C.; Rajapakse, H. A.;
Tyler, A. N. Tetrahedron 1999, 29, 8671. (c) Tanimoto, N.; Gerritz, S. W.;
Sawabe, A.; Noda, T.; Filla, S. A.; Masamune, S. Angew Chem., Int. Ed.
Engl. 1994, 33, 673. (d) Roush, W. R.; Bannister, T. D.; Wendt, M. D.;
Jablonowski, J. A.; Scheidt, K. A. J. Org. Chem. 2002, 67, 4275. (e)
Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett. 1996, 37, 8585.
(f) Paterson, I.; Collett, L. A. Tetrahedron Lett. 2001, 42, 1187.
(6) For aldol reactions of chiral methyl ketone trichlorosilyl enolates
under base catalysis see: Denmark, S. E.; Fujimori, S. Synlett 2001, 1024.
(7) (a) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew.
Chem., Int. Ed. Engl. 1985, 24, 1. (b) Kolodiazhnyi, O. I. Tetrahedron 2003,
59, 5953. (c) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 10. (d)
Seebach, D.; Prelog, V. Angew. Chem. 1982, 21, 654.
* To whom correspondence should be addressed. Fax: +55-019-3788-
3023.
† This paper is dedicated to Prof. Angelo da Cunha Pinto (UFRJ) for his
outstanding contributions to the field of organic synthesis in Brazil.
(1) Reviews of the aldol reaction: (a) Cowden, C. J.; Paterson, I. Org.
React. 1997, 51, 1. (b) Franklin, A. S.; Paterson, I. Contemp. Org. Synth.
1994, 1, 317. (c) Heathcock, C. H. In Comprehensive Organic Synthesis;
Heathcock, C. H., Ed.; Pergamon Press: New York, 1991; Vol. 2, p 181.
(d) Kim, B. M.; Williams, S. F.; Masamune, S. In ComprehensiVe Organic
Synthesis; Heathcock, C. H., Ed.; Pergamon Press: New York, 1991; Vol.
2, p 239. (e) Paterson, I. In Comprehensive Organic Synthesis; Heathcock,
C. H., Ed.; Pergamon Press: New York, 1991; Vol. 2, p 301. (f) Evans, D.
A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1.
(2) (a) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett.
1996, 37, 8581. (b) Evans, D. A.; Cote, B.; Coleman, P. J.; Connell, B. T.
J. Am. Chem. Soc. 2003, 125, 10893.
(8) (a) Izumi, Y.; Tai, A. in Stereodifferentiating Reactions, Academic
Press: New York, 1977. (b) Masamune, S.; Hirama, M.; Mori, S.; Ali, S.
K.; Garvey, D. S. J. Am. Chem. Soc. 1981, 103, 1568.
10.1021/ol0618712 CCC: $33.50
© 2006 American Chemical Society
Published on Web 08/29/2006