Chemistry Letters Vol.34, No.11 (2005)
1563
Ward, Angew. Chem., Int. Ed., 42, 3011 (2003); A. D. Shukla,
B. Ganguly, P. C. Dave, A. Samanta, and A. Das, Chem. Com-
mun., 2002, 2648; P. F. H. Schwab, S. Diegoli, M. Biancardo,
and C. A. Bignozzi, Inorg. Chem., 42, 6613 (2003).
C. G. Pierpont and R. M. Buchanan, Coord. Chem. Rev., 38, 45
(1981); C. G. Pierpont, Coord. Chem. Rev., 216–217, 99
(2001); C. G. Pierpont and C. W. Lange, Prog. Inorg. Chem.,
41, 331 (1994); M. D. Ward and J. A. McCleverty, J. Chem.
Soc., Dalton. Trans., 2002, 275.
A. B. P. Lever, P. R. Auburn, E. S. Dodsworth, M. Haga, W.
Liu, M. Melnik, and W. A. Nevin, J. Am. Chem. Soc., 110,
8076 (1988); M. Haga, E. S. Dodsworth, and A. B. P. Lever,
Inorg. Chem., 25, 447 (1986); P. R. Auburn, E. S. Dodsworth,
M. Haga, W. Liu, W. A. Nevin, and A. B. P. Lever, Inorg.
Chem., 30, 3502 (1991); M. Haga, E. S. Dodsworth, A. B. P.
Lever, S. R. Boone, and C. G. Pierpont, J. Am. Chem. Soc.,
108, 7413 (1986).
3
4
Figure 2. UV–vis spectra of the ruthenium–dioxolene com-
plexes in CH2Cl2 at room temperature under N2.9 Solid line is
[1]þ (8:1 ꢅ 10ꢂ5 mol dmꢂ3) and dashed line 2 (7:7 ꢅ 10ꢂ5
mol dmꢂ3).
5
S. Bhattacharya, S. R. Boone, G. A. Fox, and C. G. Pierpont,
J. Am. Chem. Soc., 112, 1088 (1990); S. Bhattacharya and
C. G. Pierpont, Inorg. Chem., 33, 6038 (1994); S. Bhattacharya
and C. G. Pierpont, Inorg. Chem., 30, 1511 (1991); S. R. Boone
and C. G. Pierpont, Inorg. Chem., 26, 1769 (1987).
K. Kobayashi, H. Ohtsu, T. Wada, T. Kato, and K. Tanaka,
J. Am. Chem. Soc., 125, 6729 (2003).
g ¼ 2:00 in CH2Cl2 at room temperature, whereas the catechol-
ate complex 2 was found to be diamagnetic as expected. The
complex [1]þ exhibited a strong absorption band at 832 nm
(Figure 2),9 whose transition energy is similar to those reported
so far for Ru(trpy)(ClSQ)(OAc) (885 nm)6 and other RuII–SQ
complexes (750–950 nm).4–8 Thus, the CT band of [1]þ is as-
signed to the MLCT transition from the dꢀ orbital of ruthe-
nium(II) to the ꢀꢀ orbital of the dioxolene ligand. On the other
hand, the catecholate complex 2 exhibited an absorption band
at 523 nm (Figure 2),9 which must be viewed as related to the
maximum absorption length reported for cis-Ru(trpy)(PPh3)Cl2
(530 nm).15 Accordingly, the absorption band is assigned to
the MLCT transition form the dꢀ orbital of ruthenium(II) to
the ꢀꢀ orbital of terpyridine ligand. The spectroscopic results
strongly indicate that [1]þ and 2 have the RuII–SQ and RuII–
Cat frameworks, respectively.
The complexes [1]þ and 2 both exhibited two redox couples
at E1=2 ¼ ꢂ0:09 and þ0:76 V vs SCE, respectively. As expected
from the RuII–SQ and the RuII–Cat frameworks of [1]þ and 2,
respectively, the equilibrium electrode potential of [1]þ was
located at a potential between the two redox couples (þ0:34
V), and that of 2 was positioned at the potential lower than the
two redox couples (ꢂ0:22 V). As a result, the redox couples
observed at ꢂ0:09 and þ0:76 V are reasonably assigned to the
Cat/SQ and RuII/RuIII processes, respectively. In addition,
electrochemical reduction of [1]þ in CH2Cl2 at ꢂ0:4 V gave a
reduced species whose UV–vis absorption property is quite
similar to that of 2. By selecting the chloro-substituted dioxolene
as the ligand, the redox potential based on the Cat/SQ couple
was controlled in the region where both the reduced and the
oxidized forms of the complex are stable enough to be isolated
in their crystalline form.
6
7
8
T. Hino, T. Wada, T. Fujihara, and K. Tanaka, Chem. Lett., 33,
1596 (2004).
M. Kurihara, S. Daniel, K. Tsuge, H. Sugimoto, and K.
Tanaka, Bull. Chem. Soc. Jpn., 71, 867 (1998); H. Sugimoto
and K. Tanaka, J. Organomet. Chem., 622, 280 (2001); T.
Wada, T. Fujihara, M. Tomori, D. Ooyama, and K. Tanaka,
Bull. Chem. Soc. Jpn., 77, 741 (2004).
9
For [1](ClO4): Yield 40%. Found: C, 54.91; H, 4.11; N, 4.53%.
.
Calcd for C39H29N3O6Cl2PRu (C4H10O2): C, 55.61; H, 4.23;
N, 4.52%. UV–vis: ꢁmax/nm (CH2Cl2) 274 ("/dm3 molꢂ1
cmꢂ1 21700), 313 (25900), 479 (4270), 832 (10000). ESR
(CH2Cl2): g ¼ 2:00. ESI MS (CH2Cl2): m=z 739 (½M ꢂ
ClO4ꢃþ). For 2: Yield 65%. Found: C, 63.36; H, 4.38; N,
5.38%. Calcd for C39H29N3O2ClPRu: C, 63.37; H, 3.95; N,
5.68%. UV–vis: ꢁmax/nm (CH2Cl2) 280 ("/dm3 molꢂ1 cmꢂ1
22200), 314 (27100), 523 (5250). ESI MS (CH2Cl2): m=z
739 ([M]þ).
10 S. Srivastava, Appl. Spectrosc. Rev., 22, 401 (1986); R. D.
Feltham and P. Brant, J. Am. Chem. Soc., 104, 641 (1982).
11 X-ray photoelectron spectra (XPS) were measured with an
ESCALAB 220i-XL. Mg Kꢂ radiation (1253.6 eV) was
used as the X-ray excitation source. The samples were depos-
ited on gold foil from CH2Cl2 solution. The C 1s peak was
calibrated as the value of 284.6 eV and used as the internal
reference.
.
12 Crystal data: For [1](ClO4) (C4H10O2): C43H39N3O8Cl2PRu,
Mr ¼ 928:75, T ¼ 173 K, monoclinic, space group P21=c
ꢀ
(No. 14), a ¼ 12:566ð1Þ, b ¼ 16:937ð1Þ, c ¼ 20:062ð2Þ A,
ꢄ
ꢀ 3
ꢃ ¼ 110:617ð3Þ , V ¼ 3996:2ð5Þ A , Z ¼ 4, ꢄ(Mo Kꢂ) =
6.25 cmꢂ1
,
Observed reflections 6368 (I > 3ꢅðIÞ), R1,
In conclusion, we have succeeded for the first time to char-
acterize the structural features of the RuII–SQ and RuII–Cat
frameworks arising from a unique ruthenium–dioxolene system.
wR2 ¼ 0:063, 0.192. For 2: C39H29N3O2ClPRu, Mr ¼
739:17, T ¼ 173 K, monoclinic, space group C2=c (No. 15),
ꢀ
a ¼ 32:620ð3Þ, b ¼ 8:9988ð7Þ, c ¼ 26:998ð2Þ A, ꢃ ¼
102:927ð3Þꢄ, V ¼ 7724ð1Þ A , Z ¼ 8, ꢄ(Mo Kꢂ) = 5.51
ꢀ 3
cmꢂ1, Observed reflections 5501 (I > 3ꢅðIÞ), R1, wR2 ¼
0:067, 0.217. CCDC Nos. 245947 and 245948.
13 K. Yang, J. A. Martin, S. G. Bott, and M. G. Richmond, Inorg.
Chim. Acta, 254, 19 (1997).
We are thankful to Prof. T. Yokoyama and Dr. T. Nakagawa
(Institute for Molecular Science) for the measurements of XPS.
References and Notes
1
2
A. Tsuda and A. Osuka, Science, 293, 79 (2001); L. Blacke,
L. H. Rees, T. D. W. Claride, and H. L. Anderson, Angew.
Chem., Int. Ed., 39, 1818 (2000).
14 R. M. Buchanan and C. G. Pierpont, J. Am. Chem. Soc., 102,
4951 (1980).
15 B. P. Sullivan, J. M. Calvert, and T. J. Meyer, Inorg. Chem., 19,
1404 (1980).
´
J. Garcıa-Can˜adas, A. P. Mecham, L. M. Peter, and M. D.
Published on the web (Advance View) October 22, 2005; DOI 10.1246/cl.2005.1562