Communications
[10] M. Ogasawara, K. Yoshida, T. Hayashi, Organometallics 2000,
19, 1567.
[11] a) M. Johannsen, K. A. Jørgensen, J. Org. Chem. 1995, 60, 5757;
b) M. Johannsen, K. A. Jørgensen, Tetrahedron 1996, 52, 7321;
trifluoropyruvate and with less reactive monosubstituted
olefins (Scheme 5b).[12]
In summary, we have proven that the racemic Pt
complexes even with tropos biphep ligands can be resolved
as the atropos complex even at 508C but converted at higher
temperatures into either enantiopure complex just by
exchanging (R)-dabn and (R)-dabnTf with identical absolute
configuration. In carbon–carbon bond-forming reactions, the
enantiopure biphep–Pt complexes thus obtained can be used
as the atropos catalysts to give high enantioselectivity.
c) S. Oi, K. Kashiwagi, E. Terada, K. Ohuchi,
Y Inoue,
Tetrahedron Lett. 1996, 37, 6351; d) S. Oi, E. Terada, K.
Ohuchi, T. Kato, Y. Tachibana, Y. Inoue, J. Org. Chem. 1999,
64, 8660.
[12] a) K. Aikawa, S. Kainuma, M. Hatano, K. Mikami, Tetrahedron
Lett. 2004, 45, 183; b) K. Mikami, K. Aikawa, S. Kainuma, Y.
Kawakami, T. Saito, N. Sayo, H. Kumobayashi, Tetrahedron:
Asymmetry 2004, 15, 3885.
Received: July 30, 2005
Published online: October 18, 2005
Keywords: chirality · Diels–Alder reaction · enantioselectivity ·
.
ene reaction · platinum
[1] a) E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Comprehensive
Asymmetric Catalysis, Vol. 1–3, Springer, Berlin, 1999; b) Tran-
sition Metals for Organic Synthesis (Eds.: M. Beller, C. Bolm),
VCH, Weinheim, 1998; c) R. Noyori, Asymmetric Catalysis in
Organic Synthesis, Wiley, New York, 1994; d) H. Brunner, W.
Zettlmeier, Handbook of Enantioselective Catalysis, VCH,
Weinheim, 1993; e) Catalytic Asymmetric Synthesis, Vol. I and
II (Ed.: I. Ojima), VCH, New York, 1993, 2000.
[2] K. Mikami, K. Aikawa, Y. Yusa, J. J. Jodry, M. Yamanaka,
Synlett 2002, 10, 1561.
[3] The activation barrier to axial torsion in selectively deuterated
biphep is measured to be only (22 Æ 1) kcal, which suggests that
axial rotation takes place at room temperature or above: O.
Desponds, M. Schlosser, Tetrahedron Lett. 1996, 37, 47.
[4] a) K. Mikami, T. Korenaga, M. Terada, T. Ohkuma, T. Pham, R.
Noyori, Angew. Chem. 1999, 111, 517; Angew. Chem. Int. Ed.
1999, 38, 495; b) K. Mikami, K. Aikawa, T. Korenaga, Org. Lett.
2001, 3, 243; c) T. Korenaga, K. Aikawa, M. Terada, S. Kawauchi,
K. Mikami, Adv. Synth. Catal. 2001, 3, 284.
[5] K. Mikami, S. Kataoka, Y. Yusa, K. Aikawa, Org. Lett. 2004, 6,
3699.
[6] a) K. Mikami, K. Aikawa, Y. Yusa, M. Hatano, Org. Lett. 2002, 4,
91; b) K. Mikami, K. Aikawa, Y. Yusa, Org. Lett. 2002, 4, 95.
[7] For biphep-Pt complex: a) M. D. Tudor, J. J. Becker, P. S. White,
M. R. GagnØ, Organometallics 2000, 19, 4376; b) J. J. Becker,
P. S. White, M. R. GagnØ, J. Am. Chem. Soc. 2001, 123, 9478. Use
of different chirally flexible (tropos) nuphos ligands: c) S.
Doherty, C. R. Newman, R. K. Rath, H. Luo, M. Nieuwenhuy-
zen, J. G. Knight, Org. Lett. 2003, 5, 3863; d) S. Doherty, J. K.
Knight, C. Hardacre, H. Lou, C. R. Newman, R. K. Rath, S.
Campbell, M. Nieuwenhuyzen, Organometallics 2004, 23, 6127.
[8] K. Mikami, Y. Yusa, K. Aikawa, M. Hatano, Chirality 2003, 15,
105.
[9] Crystal data for 3: formula C36H28Cl2P2Pt·CH2Cl2, monoclinic,
space group P21/n, a = 10.406(4), b = 17.887(6), c = 18.695(7) ,
b = 94.096(5)8, V= 3470.8(21) 3, Z = 4, D = 1.672 gcmÀ3, and
m = 44.52 cmÀ1. All measurements were made on a Rigaku
Saturn CCD area detector with graphite monochromated MoKa
radiation (l = 0.71070 ) at 193 K and the structure was solved
by direct methods (SIR92). Of the 32323 reflections that were
collected, 9997 were unique (Rint = 0.082). R = 0.080, Rw = 0.171,
goodness of fit = 0.993, and shift/error= 0.008. CCDC 277173
contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
request/cif.
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 7257 –7260