S. Aime et al.
polar free energy contributions from the corresponding electrostatic and
van der Waals energy averages. The free energy of binding DGb of a
ligand is approximated by Equation (8), where the DU energies are, re-
spectively, the electrostatic and van der Waals energy differences be-
tween the ligand in the solvated protein (bound state) and the ligand in
the sphere of the water molecules (free state).
[15] S. Aime, M. Botta, S. Geninatti Crich, G. B. Giovenzana, G. Jommi,
R. Pagliarin, M. Sisti, Inorg. Chem. 1997, 36, 2992–3000.
[16] S. Aime, M. Botta, S. Geninatti Crich, G. B. Giovenzana, G. Jommi,
R. Pagliarin, M. Sisti, J. Chem. Soc., Chem. Commun. 1995, 1885–
1886.
[17] S. Aime, E. Gianolio, D. Corpillo, C. Cavallotti, G. Palmisano, M.
Sisti, G. B. Giovenzana, Helv. Chim. Acta 2003, 86, 615–632.
[18] J. Xu, S. J. Franklin, Jr., D. W. Whisenhunt, K. N. Raymond, J. Am.
Chem. Soc. 1995, 117, 7245–7246.
DGb ¼ b < DUele > þa < DUvdw > þg < DSASA >
ð8Þ
[19] S. Hajela, M. Botta, S. Giraudo, J. Xu, K. N. Raymond, S. Aime, J.
Am. Chem. Soc. 2000, 122, 11228–11229.
[20] D. M. J. Doble, M. Botta, J. Wang, S. Aime, A. Barge, K. N. Ray-
mond, J. Am. Chem. Soc. 2001, 123, 10758–10759.
[21] S. Aime, L. Calabi, C. Cavallotti, E. Gianolio, G. B. Giovenzana, P.
Losi, A. Maiocchi, G. Palmisano, M. Sisti, Inorg. Chem. 2004, 43 ,
7588–7590.
[22] S. H. Koenig, R. D. Brown, Prog. Nucl. Magn. Reson. Spectrosc.
1990, 26, 487–567.
[23] D. H. Powell, O. M. Ni Dhubhghaill, D. Pubanz, L. Helm, Y. S. Leb-
edev, V. Schlaepfer, A. E. Merbach, J. Am. Chem. Soc. 1996, 118,
9333–9346.
Furthermore, the binding free energy is not determined by a single con-
formation from the docking procedure, but indeed by a thermal average.
Therefore this approach tries to capture conformational fluctuations that
are important for the binding energy.
Interaction energies for the ligand in the binding pocket of the solvated
protein and in the aqueous environment were extracted using a 16 cut-
off value.
Solvent accessible surface area calculations were carried out after the
simulations on coordinates recorded every 0.5 ps of the sampling phase.
Average energies and SASA differences were fitted to the experimental
DG binding values to obtain linear response parameters a, b and g ac-
cording to Equation (8). This procedure was performed with a genetic al-
gorithm. Experimental DG values were calculated from KA values report-
ed in Table 2 (DG=ꢀRTlnKA).
[24] S. Aime, M. Botta, M. Fasano, E. Terreno, Acc. Chem. Res. 1999, 32,
941–949.
[25] G. M. Nicolle, E. Toth, K. P. Eisenwiener, H. R. Macke, A. E. Mer-
bach, J. Biol. Inorg. Chem. 2002, 7, 757–769.
[26] S. Laus, A. Sour, R. Ruloff, E. Toth, A. E. Merbach, Chem. Eur. J.
2005, 11, 3064–3076.
[27] G. M. Nicolle, L. Helm, A. E. Merbach, Magn. Reson. Chem. 2003,
41, 794–799.
[28] H. G. Thomas, A. Lomakin, D. Blankschtein, G. B. Benedek, Lang-
muir 1997, 13, 209–218.
Acknowledgements
[29] V. Schadler, C. Nardin, U. Wiesner, E. Mendes, J. Phys. Chem. B
2000, 104, 5049–5052.
[30] P. Debye, J. Appl. Phys. 1944, 15, 338–343.
Support from Bracco Imaging Spa, PRIN 2005, Noe-EMIL and DiMI is
gratefully acknowledged. This work was carried out within the frame-
work of EU-Cost D18 Action.
[31] P. J. Wyatt, Anal. Chim. Acta 1993, 272, 1–40.
[32] K. Mattison, M. Kaszuba, American Biotechnology Laboratory, June
2003.
[33] U. Kragh-Hansen, Dan. Med. Bull. 1990, 37, 57–84.
[34] D. C. Carter, J. X. Ho, Adv. Protein Chem. 1994, 47, 152–203.
[35] T. J. Peters, All about Albumin: biochemistry, genetics and medical
applications, Academic Press, San Diego, 1996.
[36] S. Curry, P. Brick, N. P. Franks, Biochim. Biophys. Acta 1999, 1441,
131–140.
[37] S. Curry, H. Mandelkov, P. Brick, N. Franks, Nat. Struct. Biol. 1998,
5, 827–835.
[38] J. Ghuman, P. A. Zunszain, I. Petitpas, A. A. Bhattacharya, M. Ota-
giri, S. Curry, J. Mol. Biol. 2005, 353, 38–52.
[39] J. B. Livramento, C. Weidensteiner, M. I. M. Prata, P. R. Allegrini,
C. F. G. C. Geraldes, L. Helm, R. Kneuer, A. E. Merbach, A. C.
Santos, P. Schmidt, E. Toth, Contrast Media Mol. Imaging 2006, 1,
30–39.
[40] X. M. He, D. C. Carter, Nature 1992, 358, 209–215.
[41] R. Reed, J. Biol. Chem. 1977, 252, 7483–7487.
[42] H. Vorum, B. Honorꢄ, J. Pharm. Pharmacol. 1996, 48, 870–875.
[43] S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Protein
Eng. 1999, 12, 439–446.
[1] R. B. Lauffer, Chem. Rev. 1987, 87, 901–927.
[2] A. E. Merbach, E. Toth, The Chemistry of Contrast Agents in Medi-
cal Magnetic Resonance Imaging, Wiley, Chichester, 2001.
[3] S. Aime, M. Botta, M. Fasano, E. Terreno, Chem. Soc. Rev. 1998, 27,
19–29.
[4] P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev.
1999, 99, 2293–2352.
[5] H. J. Weinmann, A. Mꢂhler, B. Radꢂchel in Biomedical Magnetic
Resonance Imaging and Spectroscopy (Ed.: I. R. Young), Wiley, Chi-
chester, 2000, p. 705.
[6] L. Banci, I. Bertini, C. Luchinat, Nuclear and Electronic Relaxation,
VCH, Weinheim, 1991.
[7] S. Aime, A. Barge, E. Gianolio, S. Geninatti Crich, W. Dastrꢃ, F.
Uggeri in Metallotherapeutic drugs
& metal based Diagnostic
Agents; The use of Metals in Medicine, (Eds.: M. Gielen, E. R. T.
Tiekink), Wiley, 2005, p.541.
[8] S. Aime, M. Botta, M. Fasano, E. Terreno, Protein-bound metal che-
lates in The chemistry of contrast agents in medical Magnetic Reso-
nance Imaging. (Eds.: A. E. Merbach, E. Toth), Wiley, Chichester,
2001, p. 193.
[44] S. Aime, M. Botta, F. Fedeli, E. Gianolio, E. Terreno, P. L. Anelli,
Chem. Eur. J. 2001, 7, 5261–5269.
[9] M. H. Ou, C. H. Tu, S. C. Tsai, W. T. Lee, G. C. Lin, Y. M. Wang,
Inorg. Chem. 2006, 45, 244–254.
[45] A. Barge, G. Cravotto, E. Gianolio, F. Fedeli, Contrast Media Mol.
Imaging 2006, 1, 184–188.
[10] S. Aime, M. Chiaussa, G. Digilio, E. Gianolio, E. Terreno, J. Biol.
Inorg. Chem. 1999, 4, 766–774.
[46] Gaussian 98, Revision A.11, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski,
J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich,
J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J.
Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q.
Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
[11] S. Aime, E. Gianolio, D. Longo, R. Pagliarin, C. Lovazzano, M.
Sisti, ChemBioChem 2005, 6 , 818.
[12] F. A. Dunand, A. Borel, A. E. Merbach, J. Am. Chem. Soc. 2002,
124, 710–716.
[13] S. Aime, E. Gianolio, E. Terreno, G. B. Giovenzana, R. Pagliarin,
M. Sisti, G. Palmisano, M. Botta, M. Lowe, D. Parker, J. Biol. Inorg.
Chem. 2000, 5, 488–497.
[14] S. Aime, M. Botta, S. Geninatti Crich, G. B. Giovenzana, R. Pagliar-
in, M. Sisti, E. Terreno, Magn. Reson. Chem. 1998, 36, 200–208.
5796
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 5785 – 5797