sequestering excesses of solution reactants6 or chemically
tagged reagents.7 Simple filtration eliminates the need for
any time-consuming chromatographic workup. Sequestering
reagents can however suffer from slow rates of removal of
contaminants and the complementarity of product and
impurity functionality.
The polymer thus formed was a solid when dry but
demonstrated remarkable swelling properties in a range of
organic solvents (MeCN, CH2Cl2, THF) and possessed a
consistency similar to that of gelatin when solvated.17 We
term ROM polymers of this consistency as ROMPGELs.
ROMPGEL 3 could be stored at room temperature and in
the air over several weeks without any noticeable decom-
position.
We have already reported a method of impurity annihila-
tion of a solution-phase reaction by incorporation of excess
reagents into an insoluble polymer, formed in situ.8 We now
report a chromatography-free Horner-Emmons reaction of
aldehydes to R,â-unsaturated ethyl esters and nitriles.9
There is a clear need for maximizing the substrate loading
of a polymer-supported reagent. In our approach, the reagent
is also the monomer building block for the polymer.10 As
such, the polymer loading should ideally approach quantita-
tive. Commercially available 2-norbornenemethanol (a mix-
ture of endo- and exo-isomers) was converted to the
phosphite11 1 followed by Arbusov12 reaction to give the
Horner-Emmons monomer 2. Ring-opening metathesis
polymerization13 (ROMP) of the monomer was achieved in
quantitative yield with Grubbs’ catalyst14 and terminated with
ethyl vinyl ether (Scheme 1).15 Since this new polymer is
Horner-Emmons Reaction. A range of bases was
screened for the ROMPGEL Horner-Emmons reaction using
p-nitrobenzaldehyde. The results are shown in Table 1. Of
Table 1. Bases Screened for the Horner-Emmons Reaction
run
base
T/h
convn to 5a
1
2
3
4
5
6
7
8
K2CO3, toluene
KHMDS, toluene
NaOEt, EtOH
NaOH, THF
LDA, THF
24
24
4
4
1
24
16
24
24
48
4
no reaction
complex mixture
complex mixture
20%a
Scheme 1
20%a
LDA, THFb
100%
100%
no reaction
no reaction
50%
LHMDS, THFb
pyridine
NEt3
DBU, LiCl, MeCN
TMG,c MeCN
Barton base,d MeCN
9
10
11
12
100%
100%
4
a 4-NO2-C6H4CH2OH isolated in 80% yield. b 3 pretreated with base (4
equiv, 2 h). Excess base removed by washing with dry THF prior to addition
of aldehyde. c N,N,N′,N′-Tetramethylguanidine. d N-tert-Butyl-N′,N′,N′′,N′′-
tetramethylguanidine.
the anionic bases used, solid potassium carbonate in toluene
showed no detectable reaction after 24h (run 1). Both
potassium hexamethyldisilazide (KHMDS, run 2) and sodium
ethoxide (run 3) gave a complex mixture of products. Sodium
hydroxide (run 4) and, unexpectedly though unsurprisingly,
lithium diisopropylamide (LDA, run 5) both resulted in high
undiluted by cross-linking units or co-polymerization agents,
the loading of the polymer should be identical to the molarity
of the monomer, namely 3.3 mmol g-1.16
(5) Akelah, A.; Sherrington, D. C. Chem. ReV. 1981, 81, 557. Habermann,
J.; Ley, S. V.; Schucht, O.; Thomas, A. W.; Murray, P. J. J. Chem. Soc.,
Perkin Trans. 1 1999, 1251 and references therein. Habermann, J.; Ley, S.
V.; Scott, J. S. J. Chem. Soc., Perkin Trans. 1 1999, 1253 and references
therein.
(6) Flynn, D. L.; Crich, J. Z.; Devraj, R. V.; Hockerman, S. L.; Parlow,
J. J.; South, M. S.; Woodard, S. S. J. Am. Chem. Soc. 1997, 119, 4874.
Parlow, J. J.; Mischke, D. A.; Woodard, S. S. J. Org. Chem. 1997, 62,
5908. Booth, R. J.; Hodges, J. C. J. Am. Chem. Soc. 1997, 119, 4882.
Armstrong, R. W.; Keating, T. A. J. Am. Chem. Soc. 1996, 118, 2574.
Kaldor, S. W.; Siegel, M. G.; Fritz, J. E.; Dressman, B. A.; Hanh, P. J.
Tetrahedron Lett. 1996, 37, 7193. Janda, K. D. J. Org. Chem. 1998, 63,
889.
(7) Starkey, G. W.; Parlow, J. J.; Flynn, D. L. Bioorg. Med. Chem. Lett.
1998, 2385.
(8) Barrett, A. G. M.; Smith, M. L.; Zecri, F. J. Chem. Commun. 1998,
2317.
(9) Boutagy, J.; Thomas, R. Chem. ReV., 1974, 74, 87. Wadsworth, W.
S. Org. React. 1977, 25, 73. Maryanoff, B. E., Reitz, A. B. Chem. ReV.
1989, 89, 863.
(11) Huyser, E. S.; Dieter, J. A. J. Am. Chem. Soc. 1968, 90, 4205.
(12) Lombardo, L.; Taylor, R. J. K. Synthesis 1978, 131. Wadsworth,
W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
(13) Gibson, V. C. AdV. Mater. 1994, 6, 37. Novak, B. M.; Grubbs, R.
H. J. Am. Chem. Soc. 1988, 110, 960. Novak, B. M.; Grubbs, R. H. J. Am.
Chem. Soc. 1988, 110, 7542. Schrock, R. H. Acc. Chem. Res. 1990, 23,
158. Breslow, D. S. Prog. Polym. Sci. 1993, 18, 1141.
(14) Bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride,
commercially available from Fluka.
(15) ROM polymerization can easily be monitored by taking the 1H NMR
of aliquots in CDCl3. The norbornene monomers have characteristic vinyl
protons at 6-6.2 ppm. Releasing the ring strain shifts these signals to 5.2-
5.5 ppm in the polymer.
(16) For a high-loading (2.6 mmol g-1) ion-exchange Wadsworth-
Emmons resin, see: Cainelli, G.; Contento, M.; Manescalchi, F.; Regnoli,
R. J. Chem. Soc., Perkin Trans. 1 1980, 2516. For a moderate loading (0.6
mmol g-1) polystyrene-derived Wadsworth-Emmons resin, see: Salvino,
J. M.; Kresow, T. J.; Darnbrough, S.; Labaudiniere, R. J. Comb. Chem.
1999, 1, 134.
(10) Ball, C. P.; Barrett, A. G. M.; Poitout, L. F.; Smith, M. L.; Thorn,
Z. E. Chem. Commun. 1998, 2453.
(17) Typically, 50 mg of dry ROMPGEL would swell to 5 mL when
solvated in acetonitrile.
580
Org. Lett., Vol. 1, No. 4, 1999