NJC
Paper
¨
4 J. G. Barlind, L. K. Buckett, S. G. Crosby, O. Davidsson,
protein (InhA). Similarly, the benzodiazepinediones derived from
valine (4c), proline (4f) and phenylalanine (4g) also exhibited
hydrogen bonding interaction/p–p staking interaction with the
amino acid residues of the protein, which are depicted in Fig. 2.
¨
H. Emtenas, A. Ertan and G. O’Mahony, Bioorg. Med. Chem.
Lett., 2013, 23(9), 2721–2726.
5 L. W. Mohamed and M. F. El-yamany, Arch. Pharmacal Res.,
2012, 35(8), 1369–1377.
6 L. Loudni, J. Roche, V. Potiron, J. Clarhaut, C. Bachmann,
J. P. Gesson and I. Tranoy-Opalinski, Bioorg. Med. Chem.
Lett., 2007, 17(17), 4819–4823.
7 C. G. Joseph, K. R. Wilson, M. S. Wood, N. B. Sorenson,
D. V. Phan, Z. Xiang and C. Haskell-Luevano, J. Med. Chem.,
2008, 51(5), 1423–1431.
Conclusions
In conclusion, a novel approach to 1,4-benzodiazepine-2,5-dione
and quinazolinone scaffolds from the same precursor, 2-amino-
benzamido methyl ester (3), using chloroplatinic acid under mild
reaction conditions was reported. The structure of 1,4-diazepine-
2,5-dione was varied using various L-amino acid methyl ester
hydrochlorides. Furthermore, we studied the anti-mycobacterial
activity and docking correlations of the synthesized compounds.
All the compounds were found to be active against Mtb, and
among them 4f and 4h derived from proline and tryptophan,
respectively, showed better activity compared to traditional anti-
TB drugs. The 1,4-diazepine-2,5-dione derived from the trypto-
phan 4h was found to be the most active in terms of in vitro
screening, which had an MIC value of 1.55 mg mLÀ1 with a
docking score of À10.58 kcal molÀ1. These amino acid-derived,
biocompatible, non-peptide peptidomimetics open a new door
in anti-TB drug design perspective by providing an entire range
of highly specific and non-toxic boost candidates.
8 (a) R. S. McDowell, B. K. Blackburn, T. R. Gadek, L. R.
McGee, T. Rawson, M. E. Reynolds and E. D. Thorsett, J. Am.
Chem. Soc., 1994, 116(12), 5077–5083; (b) B. K. Blackburn,
A. Lee, M. Baier, B. Kohl, A. G. Olivero, R. Matamoros and
R. S. McDowell, J. Med. Chem., 1997, 40(5), 717–729.
9 M. F. Cheng, H. M. Yu, B. W. Ko, Y. Chang, M. Y. Chen, T. I. Ho
and J. M. Fang, Org. Biomol. Chem., 2006, 4(3), 510–518.
10 (a) D. J. Parks, L. V. LaFrance, R. R. Calvo, K. L. Milkiewicz,
V. Gupta, J. Lattanze and D. Maguire, Bioorg. Med. Chem. Lett.,
2005, 15(3), 765–770; (b) M. D. Cummings, C. Schubert,
D. J. Parks, R. R. Calvo, L. V. LaFrance, J. Lattanze and
T. Lu, Chem. Biol. Drug Des., 2006, 67(3), 201–205.
11 W. B. Wright Jr, H. J. Brabander, E. N. Greenblatt, I. P. Day
and R. A. Hardy Jr, J. Med. Chem., 1978, 21(10), 1087–1089.
12 R. L. Clark, K. C. Carter, A. B. Mullen, G. D. Coxon,
G. Owusu-Dapaah, E. McFarlane and S. P. Mackay, Bioorg.
Med. Chem. Lett., 2007, 17(3), 624–627.
Conflicts of interest
13 G. M. Karp, J. Org. Chem., 1995, 60(18), 5814–5819.
14 (a) C. Wattanapiromsakul, P. I. Forster and P. G. Waterman,
Phytochemistry, 2003, 64(2), 609–615; (b) S. B. Mhaske and
N. P. Argade, Tetrahedron, 2006, 62(42), 9787–9826.
15 G. Grover and S. G. Kini, Eur. J. Med. Chem., 2006, 41(2), 256–262.
16 P. Verhaeghe, N. Azas, M. Gasquet, S. Hutter, C. Ducros,
M. Laget and P. Vanelle, Bioorg. Med. Chem. Lett., 2008,
18(1), 396–401.
17 (a) P. M. Chandrika, T. Yakaiah, A. R. R. Rao, B. Narsaiah,
N. C. Reddy, V. Sridhar and J. V. Rao, Eur. J. Med. Chem., 2008,
43(4), 846–852; (b) B. Marvania, P. C. Lee, R. Chaniyara,
H. Dong, S. Suman, R. Kakadiya and T. L. Su, Bioorg. Med.
Chem., 2011, 19(6), 1987–1998.
There are no conflicts to declare.
Acknowledgements
MPS thank UGC-SAP DRS III (Grant No. UGC F-540/10/DRS-III
(SAP-I) Dated 14–09-2016). Authors are grateful to Institution of
Excellence, University of Mysore, Mysuru for spectral analysis
and HPC Lab, University potential for Excellence, University of
Mysore, Mysuru for providing docking software facility. N. Rajeev
thanks UGC, New-Delhi for providing RGNF Fellowship.
Notes and references
18 (a) V. Alagarsamy, V. Raja Solomon, R. V. Sheorey and
R. Jayakumar, Chem. Biol. Drug Des., 2009, 73(4), 471–479;
(b) V. Alagarsamy, V. Raja Solomon, M. Murugan,
K. Dhanabal, P. Parthiban and G. V. Anjana, J. Enzyme Inhib.
Med. Chem., 2008, 23(6), 839–847.
1 (a) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev.,
2003, 103(3), 893–930; (b) S. G. Smith, R. Sanchez and
M. M. Zhou, Chem. Biol., 2014, 21(5), 573–583; (c) E. Vitaku,
D. T. Smith and J. T. Njardarson, J. Med. Chem., 2014, 57(24),
10257–10274.
19 A. S. El-Azab and K. E. ElTahir, Bioorg. Med. Chem. Lett.,
2012, 22(5), 1879–1885.
´
´
2 (a) P. Verdie, G. Subra, L. Feliu, P. Sanchez, G. Berge,
G. Garcin and J. Martinez, J. Comb. Chem., 2007, 9(2), 20 (a) U. Pandit and A. Dodiya, Med. Chem. Res., 2013, 22(7),
254–262; (b) N. Cabedo, X. Pannecoucke and J. C. Quirion,
Eur. J. Org. Chem., 2005, 1590–1596.
3364–3371; (b) H. K. Maurya, R. Verma, S. Alam, S. Pandey,
V. Pathak, S. Sharma and A. Gupta, Bioorg. Med. Chem. Lett.,
2013, 23(21), 5844–5849.
¨
3 (a) L. D. Fader, R. Bethell, P. Bonneau, M. Bos, Y. Bousquet,
M. G. Cordingley and N. Goudreau, Bioorg. Med. Chem. Lett., 21 M. Dukat, K. Alix, J. Worsham, S. Khatri and M. K. Schulte,
2011, 21(1), 398–404; (b) L. D. Fader, S. Landry, S. Goulet, Bioorg. Med. Chem. Lett., 2013, 23(21), 5945–5948.
S. Morin, S. H. Kawai, Y. Bousquet and J. Rancourt, Bioorg. 22 M. S. Malamas and J. Millen, J. Med. Chem., 1991, 34(4),
Med. Chem. Lett., 2013, 23(11), 3401–3405.
1492–1503.
186 | New J. Chem., 2019, 43, 182--187
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019