LETTER
Chiral Version of the Burgess Reagent
449
drops of H2O and concentrated H2SO4 were added and the reaction
mixture was stirred at r.t. for 12 h, before the pH was set to 8 (sat.
NaHCO3). The layers were separated and the aqueous layer was ex-
tracted three times with CH2Cl2. The combined organic layers were
washed with H2O and brine and the solvent was evaporated under
reduced pressure. The residue was purified by flash column chro-
matography (CH2Cl2–MeOH, 400:1) affording 47 mg of 12a (25%)
and 46 mg of 12b (24%).
(4) Rinner, U.; Adams, D. R.; dos Santos, M. L.; Abboud, K. A.;
Hudlicky, T. Synlett 2003, 1247.
(5) (a) Nicolaou, K. C.; Snyder, S. A.; Nalbandian, A. Z.;
Longbottom, D. A. J. Am. Chem. Soc. 2004, 126, 6234.
(b) Nicolaou, K. C.; Huang, X.; Snyder, S. A.; Rao, P. B.;
Bella, M.; Reddy, M. V. Angew. Chem. Int. Ed. 2002, 41,
834. (c) Nicolaou, K. C.; Snyder, S. A.; Longbottom, D. A.;
Nalbandian, A. Z.; Huang, X. Chem. Eur. J. 2004, 10, 5581.
(d) Nicolaou, K. C.; Longbottom, D. A.; Snyder, S. A.;
Nalbandian, A. Z.; Huang, X. Angew. Chem. Int. Ed. 2002,
41, 3866.
(6) (a) Schneider, C.; Sreekanth, A. R.; Mai, E. Angew. Chem.
Int. Ed. 2004, 43, 5691. (b) Yang, M.; Zhu, C.; Yuan, F.;
Huang, Y.; Pan, Y. Org. Lett. 2005, 7, 1927. (c) Schaus, S.
E.; Larrow, J. F.; Jacobsen, E. N. J. Org. Chem. 1997, 62,
4197. (d) Sagawa, S.; Abe, H.; Hase, Y.; Inaba, T. J. Org.
Chem. 1999, 64, 4962. (e) Iida, T.; Yamamoto, N.;
Matsunaga, S.; Woo, H.-G.; Shibasaki, M. Angew. Chem.
Int. Ed. 1998, 37, 2223. (f) Carrée, F.; Gil, R.; Collin, J.
Org. Lett. 2005, 7, 1023. (g) Bartoli, G.; Bosco, M.;
Carlone, A.; Locatelli, M.; Melchiorre, P.; Sembri, L. Org.
Lett. 2004, 6, 3973. (h) Bartoli, G.; Bosco, M.; Carlone, A.;
Locatelli, M.; Massaccesi, M.; Melchiorre, P.; Sembri, L.
Org. Lett. 2004, 6, 2173. (i) Bandini, M.; Cozzi, P. G.;
Melchiorre, P.; Umani-Ronchi, A. Angew. Chem. Int. Ed.
2004, 43, 84.
Compound 12a: mp 111–113 °C; Rf = 0.5 (CH2Cl2–MeOH, 100:1);
[a]D20 –77.8 (c 1.05, CHCl3). IR: n = 3434, 3368, 3019, 2954, 2868,
1711, 1603, 1585, 1513, 1452, 1370, 1318, 1279, 1216, 1115, 1038,
1028, 757, 712, 668 cm–1. 1H NMR (300 MHz, CDCl3): d = 8.07 (d,
J = 7.7 Hz, 2 H), 7.55 (t, J = 7.2 Hz, 1 H), 7.43 (t, J = 7.7 Hz, 2 H),
4.83 (dt, J = 10.6, 4.5 Hz, 1 H), 4.59 (d, J = 9.3 Hz, 1 H), 4.34–4.46
(m, 1 H), 3.76–3.90 (m, 1 H), 2.07–2.19 (m, 2 H), 1.73–1.93 (m, 3
H), 1.13–1.69 (m, 10 H), 0.91–1.06 (m, 1 H), 0.86 (d, J = 10.0 Hz,
3 H), 0.75 (d, J = 6.6 Hz, 3 H), 0.46–0.68 (m, 4 H). 13C NMR (75
MHz, CDCl3): d = 167.2, 156.5, 133.4, 130.6, 130.2, 128.7, 76.6,
74.7, 54.3, 47.5, 41.2, 34.6, 32.8, 31.5, 26.6, 25.0, 24.5, 23.8, 22.2,
21.1, 16.8. HRMS: m/z calcd for C24H35NO4: 401.2566; found:
401.2579.
Compound 12b: mp 138–141 °C; Rf = 0.45 (CH2Cl2–MeOH,
20
100:1); [a]D –15.8 (c 1.05, CHCl3). IR (film): n = 3685, 3435,
3020, 2956, 2869, 1711, 1515, 1452, 1318, 1279, 1216, 1115, 1039,
929, 759, 714, 669 cm–1. 1H NMR (300 MHz, CDCl3): d = 8.05 (d,
J = 7.7 Hz, 2 H), 7.55 (t, J = 7.1 Hz, 1 H), 7.43 (t, J = 7.7 Hz, 2 H),
4.86 (dt, J = 10.6, 4.5 Hz, 1 H), 4.69 (d, J = 9.3 Hz, 1 H), 4.35–4.49
(m, 1 H), 3.73–3.90 (m, 1 H), 2.12 (d, J = 12.5 Hz, 2 H), 1.98 (d,
J = 11.9 Hz, 1 H), 1.73–1.88 (m, 2 H), 1.08–1.68 (m, 10 H), 0.79–
0.97 (m, 5 H), 0.55 (d, J = 6.4 Hz, 3 H), 0.30 (d, J = 6.4 Hz, 3 H).
13C NMR (75 MHz, CDCl3): d = 167.2, 156.3, 133.3, 130.4, 130.1,
128.7, 76.0, 74.6, 54.4, 47.6, 41.8, 34.6, 33.2, 31.7, 31.6, 26.5, 24.9,
24.5, 23.9, 22.4, 20.7, 16.3. HRMS: m/z calcd for C24H35NO4:
401.2566; found: 401.2575.
(7) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E.
N. J. Am. Chem. Soc. 1995, 117, 5897.
(8) Bolm, C.; Ewald, M.; Felder, M.; Schlingloff, G. Chem. Ber.
1992, 125, 1169.
(9) We thank Prof. Travis Dudding (Brock University) for
performing transition state optimization calculations
(Gaussian 03) for the C2 catalysts as well as for the menthol
auxiliary. Full details of these calculations will be disclosed
in an upcoming full paper.
(10) We thank one of the referees for suggesting this explanation.
(11) For reviews on the synthesis and utility of 1,2-amino-
alcohols see: (a) Shaw, G. In Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F.
V., Eds.; Pergamon Press: New York, 1996, 397.
(b) Wallbaum, S.; Martens, J. Tetrahedron: Asymmetry
1992, 3, 1475. (c) Noyori, R.; Kitamura, M. Angew. Chem.,
Int. Ed. Engl. 1991, 193, 34. (d) Singh, V. K. Synthesis
1991, 605.
Acknowledgment
The authors are indebted to Natural Sciences and Engineering
Research Council (NSERC) of Canada, Canadian Foundation for
Innovation (CFI), Ontario Innovation Trust (OIT), Petroleum Re-
search Fund administered by the American Chemical Society (PRF-
AC), and Brock University for financial support of this work. TDC
Research Inc. and TDC Research Foundation are acknowledged for
summer research fellowships for R.S. and B.S.
(12) de Parrodi, C. A.; Juaristi, E.; Quinterno, L.; Clara-Sosa, A.
Tetrahedron: Asymmetry 1997, 8, 1075.
(13) Pelphrey, P. M.; Abboud, K. A.; Wright, D. L. J. Org. Chem.
2004, 69, 6931.
References and Notes
(14) Compound 18: colorless oil; [a]D23 –48.5 (c 0.275, CHCl3).
IR (film): n = 3448, 3340, 2956, 2926, 2871, 1631, 1548,
1496, 1446, 1372, 1322, 1173, 1097, 986, 954, 917, 863,
815, 759, 700, 661, 609, 541 cm–1. 1H NMR (499 MHz,
CDCl3): d = 7.28–7.46 (m, 5 H), 7.06 (br s, 1 H), 5.76 (br s,
1 H), 5.06 (dt, J = 9.3, 2.2 Hz, 1 H), 4.80 (td, J = 11.0, 4.6
Hz, 1 H), 4.24 (ddd, J = 10.6, 8.8, 2.8 Hz, 1 H), 4.13 (ddd,
J = 18.2, 10.3, 9.2 Hz, 1 H), 2.68 (br s, 1 H), 2.08 (d, J = 12.5
Hz, 1 H), 1.83–1.91 (m, 1 H), 1.67 (d, J = 12.1 Hz, 2 H),
1.32–1.51 (m, 2 H), 0.99 (q, J = 11.6 Hz, 1 H), 0.91 (d,
J = 5.8 Hz, 3 H), 0.89 (dd, J = 6.8, 1.0 Hz, 3 H), 0.85 (m, 1
H), 0.76 (t, J = 6.5 Hz, 3 H). 13C NMR (126 MHz, CDCl3):
d = 160.3, 138.5, 129.1, 128.7, 126.5, 79.5, 75.0, 72.1, 47.1,
40.7, 34.1, 31.5, 26.4, 23.3, 22.4, 21.2, 16.8. HRMS: m/z
calcd for C19H30N2O5S: 398.1875; found: 398.1855.
(15) We thank Dr. Ion Ghiviriga (NMR) and Dr. David Powell
(mass spectrometry) from the University of Florida for their
assistance with the structure assignment of 18. The details of
these assignments will be reported in an upcoming full paper.
(1) (a) Atkins, G. M.; Burgess, E. M. J. Am. Chem. Soc. 1968,
90, 4744. (b) Burgess, E. M.; Penton, H. R.; Taylor, E. A. J.
Am. Chem. Soc. 1970, 92, 5224. (c) Atkins, G. M.; Burgess,
E. M. J. Am. Chem. Soc. 1972, 94, 6135. (d) Burgess, E.
M.; Penton, H. R.; Taylor, E. A. J. Org. Chem. 1973, 38, 26.
(2) For reviews of Burgess Reagent see: (a) Burckhardt, S.
Synlett 2000, 559. (b) Lamberth, C. J. Prakt. Chem. 2000,
342, 518. (c) Taibe, P.; Mobashery, S. In Encyclopedia of
Reagents in Organic Synthesis, Vol. 5; Paquette, L. A., Ed.;
Wiley: Chichester, 1995, 3345. (d) Khapli, S.; Dey, S.; Mal,
D. J. Ind. Inst. Sci. 2001, 81, 461.
(3) The following statement appeared in a review by Lamberth
(ref. 2b) published in 2000: ‘The compatibility of the
Burgess reagent with many functionalities, e.g. halogens,
epoxides, alkenes, alkynes, aldehydes, ketones, acetals,
esters, secondary amides, makes it an attractive technique
for the introduction of C–C double bonds into highly
functionalized molecules.’
Synlett 2006, No. 3, 445–449 © Thieme Stuttgart · New York