LETTER
Three-Step Synthesis of Highly Substituted Phenols from 1,3-Dinitropropanes
1957
Table 1 Preparation of Nitrodibromophenols 4
Acknowledgment
This work was supported by the University of Camerino, Italy and
by MIUR-Italy.
R
Yields (%)a of 2
(reaction time, h)
Yields (%)a
of 4
a
b
c
d
e
f
Me(CH2)4
Ph(CH2)2
Ph
88 (8)
74 (6)
71 (4)
76 (18)
70 (20)
68 (48)
71 (6)
44
46
51
37
68
54
47
References and Notes
(1) (a) Modern Arene Chemistry; Astruc, D., Ed.; Wiley-VCH:
Weinheim, 2002. (b) The Chemistry of Phenols; Rappoport,
Z., Ed.; Wiley-VCH: New York, 2003.
(2) Ballini, R.; Barboni, L.; Bosica, G. J. Org. Chem. 2000, 65,
6261.
p-MeOC6H4
p-CNC6H4
m-NO2C6H4
o-Py
(3) Ballini, R.; Barboni, L.; Fiorini, D.; Giarlo, G.; Palmieri, A.
Chem. Commun. 2005, 2633.
(4) (a) Corey, E. J.; Cheng, X.-M. The Logic of Chemical
Synthesis; John Wiley and Sons: New York, 1989. (b) Ho,
T.-L. Tactics of Organic Synthesis; Academic Press Inc.:
New York, 1994. (c) Nicolaou, K. C.; Sorensen, E. J.
Classics in Total Synthesis; VCH: Weinheim, 1996.
(5) (a) Osterby, B. R.; McKelvey, R. D. J. Chem. Educ. 1996,
73, 260. (b) Reichardt, C.; Eschner, M. Liebigs Ann. Chem.
1991, 1003. (c) Kessler, M. A.; Wolfbeis, O. S. Synthesis
1988, 635.
g
a Yield of pure, isolated product.
3
1) PhN(Me)3Br·Br2
CH2Cl2, overnight
(6) (a) Fujimoto, K.; Asai, F. Jpn. Kokai Tokkyo Koho JP
2003002832, 2003; Chem. Abstr. 2003, 138, 66685.
(b) Selassie, C. D.; Verma, R. P.; Kapur, S.; Shusterman, A.
J.; Hanasch, C. J. Chem. Soc., Perkin Trans. 2 2002, 1112.
(c) Butera, J. A.; Caufield, C. E.; Graceffa, R. F.; Greenfield,
A.; Gunderson, E. G.; Havran, L. M.; Katz, A. H.; Lennox,
J. R.; Mayer, S. C.; McDevitt, R. E. U.S. Patent 01/018525,
2001; Chem. Abstr. 2001, 134, 280608.
Br
O
HO
R
O
DBU
– HBr
R
R
NO2
NO2
NO2
A
C
B
(7) Shoeib, N. A.; Bibby, M. C.; Blunden, G.; Linley, P. A.;
Swaine, D. J.; Wheelhouse, R. T.; Wright, C. W. J. Nat.
Prod. 2004, 67, 1445.
(8) (a) Nakaike, Y.; Kamijo, Y.; Mori, S.; Tamura, M.;
Nishiwaki, N.; Ariga, M. J. Org. Chem. 2005, 70, 10169;
and references cited therein. (b) de Rege, F. M. G.;
Buchwald, S. L. Tetrahedron 1995, 51, 4291.
(9) (a) Rosini, G.; Ballini, R. Synthesis 1988, 833. (b) Ballini,
R. In Studies in Natural Products Chemistry, 19; Atta-ur-
Rahman, Ed.; Elsevier: Amsterdam, 1997, 117. (c) Ballini,
R. Synlett 1999, 1009. (d) Ballini, R.; Bosica, G.; Fiorini,
D.; Palmieri, A.; Petrini, M. Chem. Rev. 2005, 105, 933.
(e) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.
Tetrahedron 2005, 61, 8971.
PhN(Me)3Br⋅Br2
CH2Cl2, overnight
(via enolisation–
bromination)
4
Scheme 2 Hypothesis of the mechanism for the conversion of
3 to 4.
Whatever the details of the mechanism, the reaction rep-
resents an unprecedented, reproducible, and useful meth-
od for the preparation of a variety of polyfunctionalized
phenol derivatives from acyclic precursors. Additionally,
in our procedure, by choosing the appropriate starting 1,3-
dinitroalkane 1, a multiplicity of groups in the ortho-posi-
tion can be easily introduced, comprising aryls and het-
eroaryls. The specific features of our approach, include,
the preparation of tetrasubstituted phenols with the avoid-
ance of ortho-meta-para mixtures common in conven-
tional aromatic synthesis. In fact, our method appears as a
regiodefined synthesis of 2-alkyl-4,5-dibromo-3-nitro-
phenols, which are very difficult to obtain by other means.
It should be noted that the synthesis of substituted bi-
phenyls (compounds 4c–f) can also be accomplished, and
the reaction conditions allow the survival of other func-
tionalities such as methoxy and nitrile.
(10) Ballini, R.; Barboni, L.; Fiorini, D.; Giarlo, G.; Palmieri, A.
Green Chem. 2005, 7, 828.
(11) (a) Nef, J. U. Liebigs Ann. Chem. 1894, 280, 263.
(b) Pinnick, H. W. Org. React. (N.Y.) 1990, 38, 655.
(c) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017.
(12) See for example: Miranda Moreno, M. J. S.; Sá e Melo, M.
L.; Campos Neves, A. S. Synlett 1994, 651.
(13) Preparation of Nitrodibromophenols 4; General
Procedure
To a stirred mixture of dinitroalkane 1 (2 mmol) and acrolein
(2.6 mmol, 0.174 mL) was added, at 0 °C, basic Al2O3 (2 g,
activity I). The resulting mixture was stirred at the same
temperature for 15 min, then at r.t. for the appropriate
reaction time (Table 1). The heterogeneous mixture was
directly charged onto a chromatography column (EtOAc–
hexane) giving the pure compound 2.13 To a solution of 2
(1 mmol) in H2O–MeOH (1:1, 10 mL), K2CO3 (0.2 g, 2
mmol) was added at r.t. After stirring for 15 min, the solution
was acidified with 4 N HCl (pH 2–3) and left at r.t. for 30
min. The organic solution was washed with NaHCO3 (3 × 5
mL), brine (1 × 10 mL), and then evaporated. The residue
was dissolved in CH2Cl2 (20 mL), followed by the addition
In summary, the letter reports a novel synthetic strategy
for the preparation of highly functionalized phenols from
acyclic precursors. The simplicity of execution, ready
availability of substrates, and the variety of potential
products make this procedure very attractive and practi-
cal.
Synlett 2006, No. 12, 1956–1958 © Thieme Stuttgart · New York