C O M M U N I C A T I O N S
Table 2. Nucleophilic Acylation of Nitroalkenes with Protected
Thiazolium Carbinols
In summary, the first direct nucleophilic addition of a carbonyl
unit to nitroalkenes has been reported. In the presence of a fluoride
anion, silyl-protected thiazolium carbinols do not undergo scission
to an aldehyde and thiazolium zwitterion, but instead access
carbonyl anion reactivity via a presumed 1,2-hydrogen shift. This
distinct fluoride-activated acyl anion strategy is divergent from the
typical combinations of heteroazolium salts and bases and thus
allows for the use of reactive nitroalkenes as substrates. Addition-
ally, newly formed stereocenters in this reaction can be controlled
by a chiral thiourea. The enantioselective process implicates key
interactions between thiourea and nitro functionality during carbon-
carbon bond formation. Mechanistic investigations and the further
exploration of these silyl-protected thiazolium carbinols as sto-
ichiometric carbonyl anions will be reported in due course.
Acknowledgment. This article is dedicated to the memory of
Professor Nabi Magomedov and his family. Support for this work
has been provided by the NSF (CAREER 0348979) and the ACS-
PRF. K.A.S. thanks Abbott Laboratories, Amgen, Boehringer
Ingelheim, and 3M for generous support, and Wacker Chemical
Corp. for providing organosilanes. A.E.M. acknowledges an ACS
Division of Organic Chemistry Fellowship sponsored by Eli Lilly.
A.M.Z. is a 2005 Pfizer Summer Undergraduate Research Fellow.
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
a Diastereoselectivity ) 6:1 when achiral thiourea 8 is replaced by 18.
Table 3. Survey of Thiazolium Carbinols
References
(1) (a) Grobel, B. T.; Seebach, D. Synthesis 1977, 357-402. (b) Seebach, D.
Angew. Chem., Int. Ed. Engl. 1979, 18, 239-258. (c) Enders, D.;
Balensiefer, T. Acc. Chem. Res. 2004, 37, 534-541. (d) Johnson, J. S.
Angew. Chem., Int. Ed. 2004, 43, 1326-1328.
(2) For a review, see: Seebach, D. Synthesis 1969, 1, 17-36. For limited
examples of dithiane additions to nitroalkenes, see: (a) Funabashi, M.;
Wakai, H.; Sato, K.; Yoshimura, J. J. Chem. Soc., Perkins Trans. 1. 1980,
14-19. (b) Knochel, P.; Seebach, D. Tetrahedron Lett. 1982, 23, 3897-
3900. (c) Hwu, J. R.; Lee, T.; Gilbert, B. A. J. Chem. Soc., Perkins Trans.
1 1992, 3219-3223.
entry
R
product
yield (%)
1
2
3
4
Ph (1b)
6
15
16
17
59
82
60
81
(3) For a review, see: (a) Albright, J. D. Tetrahedron 1983, 39, 3207-3233.
(b) Ferrino, S. A.; Maldonado, L. A. Synth. Commun. 1980, 10, 717-
723.
2-naphthyl (1c)
3-MeO-Ph (1d)
4-Br-Ph (1e)
(4) (a) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc.
2004, 126, 2314-2315. (b) Myers, M. C.; Bharadwaj, A. R.; Milgram,
B. C.; Scheidt, K. A. J. Am. Chem. Soc. 2005, 127, 14675-14680.
(5) For reviews, see: (a) Ono, N., Ed. The Nitro Group in Organic Synthesis;
John Wiley & Sons: New York, 2001. (b) Berner, O. M.; Tedeschi, L.;
Enders, D. Eur. J. Org. Chem. 2002, 1877-1894.
center is possible by addition of the carbonyl anion equivalent to
a â,â-disubstituted nitroalkene (entry 6).
Various protected thiazolium carbinols were also examined. The
2-naphthyl-derived carbinol was successfully added to nitroalkene
2a (entry 2). In addition to electron-withdrawing groups, the reaction
is also tolerant of an electron-donating substituent on the phenyl
ring (entry 3). Currently, thiazolium carbinols derived from saturated
aldehydes provide poor yields of desired product (<30%), under-
scoring the delicate balance between hydrogen transfer and
unproductive reaction pathways.Our initial investigations indicate
that this carbonyl addition process can be rendered stereoselective.
The incorporation of chiral thiourea 18 derived from quinine14
produces â-nitro ketone 7 in 67% yield and 74% ee (eq 5).
Additionally, when thiourea 18 is used instead of 8 in the reaction
that produces 12 (Table 2, entry 4), the diastereoselectivity improves
to 6:1. These unoptimized results demonstrate the strong interaction
between the nitroalkene and thiourea during the key carbonyl anion
addition process and also provide a strong impetus to explore the
potential of chiral thiourea catalysis on the title reaction.
(6) (a) Ide, W. S.; Buck, J. S. Org. React. 1948, 4, 269-303. (b) Hassner,
A.; Lokanatha Rai, K. M. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 1, pp 541-
577. (c) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407-496. (d)
Ref 1.
(7) (a) Ricci, A.; Degl’Innocenti, A. Synthesis 1989, 647-660. (b) Cirillo, P.
F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24, 553-582. (c) Degl’Innocenti,
A.; Pike, S.; Walton, D. R. M.; Seconi, G.; Ricci, A.; Fiorenza, M. J.
Chem. Soc., Chem. Commun. 1980, 1201-1202. (d) Schinzer, D.;
Heathcock, C. H. Tetrahedron Lett. 1981, 22, 1881-1884. (e) Ref 4a. (f)
Xin, L. H.; Johnson, J. S. Angew. Chem., Int. Ed. 2003, 42, 2534-2536
and references therein.
(8) Mattson, A. E.; Scheidt, K. A. Org. Lett. 2004, 6, 4363-4366.
(9) See Supporting Information for details.
(10) (a) Breslow, R. J. Am. Chem. Soc. 1958, 79, 3719-3726. (b) Breslow,
R.; Schmuck, C. Tetrahedron Lett. 1996, 37, 8241-8242.
(11) Arduengo, A. J.; Goerlich, J. R.; Marshall, W. J. Liebigs Ann. 1997, 365-
374 and references therein.
(12) (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299-4306 and references
therein. For recent reviews detailing the history and advances in hydrogen
bonding catalysis, see: (b) Schreiner, P. R. Chem. Soc. ReV. 2003, 32,
289-296. (c) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062-2064.
(13) (a) Brule´, C.; Bouillon, J. P.; Portella, C. Tetrahedron 2004, 60, 9849-
9855. (b) Menand, M. L.; Dalla, V. Synlett 2005, 95-98.
(14) (a) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7,
1967-1969. For recent enantioselective additions to nitroalkenes catalyzed
by chiral thioureas, see: (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.
N.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119-125. (c) McCooey,
S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367-6370. (d)
Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem., Int.
Ed. 2005, 44, 6576-6579.
JA056565I
9
J. AM. CHEM. SOC. VOL. 128, NO. 15, 2006 4933