Brief Articles
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 18 4551
CH2Cl2 (50 mL). The filtrate was concentrated in vacuum, and the
residue was further treated with 3 N sodium hydroxide (23 mL,
68.88 mmol) in EtOH (30 mL) and heated at reflux for 16 h. The
solution was evaporated and extracted with EtOAc (20 mL × 2)
and CH2Cl2 (20 mL × 2). The combined organic layers were dried
and evaporated to give a residue that was purified by silica gel
flash column chromatography (ethyl acetate/n-hexane ) 1:1) and
recrystallized (CH2Cl2/EtOAc) to afford compound 9, yield 39%;
7.66 (d, J ) 8.4 Hz, 1H), 8.06 (s, 1H). 13C NMR (100 MHz, CDCl3)
δ 56.1, 60.9, 69.8, 104.1, 107.5, 109.4, 124.1, 124.9, 128.3, 129.0,
129.7, 133.7, 138.0, 141.3, 152.6, 196.8. MS (EI) m/z 341 (M+,
65%), 311 (100%). HRMS (EI) calcd for C19H19NO5 (M+),
341.1257; found, 341.1260. Anal. (C19H19NO5‚0.5H2O) C, H, N.
Acknowledgment. This research were supported by the
National Science Council of the Republic of China (Grant No.
NSC 95-2320-B-038-008 and NSC 95-2752-B-400-001-PAE),
and National Health Research Institutes, Taiwan (Grant No.
95A1CAPP06-1).
1
mp 94.8-95.2 ˚C. H NMR (400 MHz, CDCl3) δ 3.84 (s, 6H),
3.95 (s, 3H), 6.94 (m, 1H), 7.14 (s, 2H), 7.22 (t, J ) 8.0 Hz, 1H),
7.31 (t, J ) 2.8 Hz, 1H), 7.47 (d, J ) 7.6 Hz, 1H), 7.59 (d, J ) 7.6
Hz, 1H), 8.99 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 56.1, 60.9,
103.1, 107.6, 115.5, 120.5, 124.0, 126.5, 127.2, 129.1, 134.0, 136.5,
141.5, 152.6, 196.6. MS (EI) m/z 311 (M+, 100%), 144 (95%),
116 (38%). HRMS (EI) calcd for C18H17NO4 (M+), 311.1162;
found, 311.1160. Anal. (C18H17NO4‚0.25H2O) C, H, N.
Supporting Information Available: Spectral data of com-
pounds 6-8, 11, 12, 16, 17, 19-21 and experimental procedures
for synthesis and biological evaluations. This material is available
5-(3′,4′,5′-Trimethoxybenzoyl)indole (10). The title compound
was obtained in 41% overall yield from 5-formylindole (26) and
3,4,5-trimethoxyphenylmagnesium bromide; mp 147.2-148.1 ˚C.
1H NMR (400 MHz, CDCl3) δ 3.85 (s, 6H), 3.94 (s, 3H), 6.62-
6.63 (m, 1H), 7.09 (s, 2H), 7.27-7.28 (m, 1H), 7.44 (d, J ) 8.4
Hz, 1H), 7.75 (dd, J ) 8.4, 1.5 Hz, 1H), 8.16 (s, 1H), 9.55 (s, 1H).
MS (EI) m/z 311 (M+, 100%), 195 (39%), 144 (90%). HRMS (EI)
calcd for C18H17NO4 (M+), 311.1145; found, 311.1151. Anal.
(C18H17NO4) C, H, N.
General Procedure for the Preparation of 1-Substituted
4- and 5-Aroylindoles Derivatives (13-15, 18). 1-Methyl-4-
(3′,4′,5′-trimethoxybenzoyl)indole (13). Potassium tert-butoxide
(0.36 g, 3.21 mmol) was added to a solution of 9 (0.5 g, 1.60 mmol)
in THF (20 mL) under vigorous stirring at room temperature.
Stirring was continued for 20 min followed by the addition of
iodomethane (0.5 mL, 8.03 mmol). After 3 h, the reaction mixture
was evaporated and extracted with EtOAc (15 mL × 2) and CH2-
Cl2 (15 mL × 2). The combined organic layers were dried over
MgSO4 and evaporated to give a residue, which was purified by
silica gel chromatography (ethyl acetate/n-hexane ) 1:3) to afford
compound 13, yield 86%; mp 105.2-106.7 ˚C. 1H NMR (400 MHz,
CDCl3) δ 3.85 (s, 6H), 3.86 (s, 3H), 3.94 (s, 3H), 6.85 (d, J ) 3.2
Hz, 1H), 7.13 (s, 2H), 7.19 (d, J ) 3.2 Hz, 1H), 7.27 (t, J ) 7.6
Hz, 1H), 7.47 (d, J ) 7.2 Hz, 1H), 7.55 (d, J ) 7.6 Hz, 1H). 13C
NMR (100 MHz, CDCl3) δ 33.0, 56.2, 60.9, 101.8, 107.6, 113.4,
120.2, 123.6, 127.8, 129.4, 130.9, 134.0, 137.3, 141.5, 152.7, 196.3.
MS (EI) m/z 325 (M+, 100%), 282 (17%), 158 (49%). HRMS (EI)
calcd for C19H19NO4 (M+), 325.1332; found, 325.1323. Anal.
(C19H19NO4) C, H, N.
References
(1) Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Tubulin
as a Target for Anticancer Drugs: Agents which Interact with the
Mitotic Spindle. Med. Res. ReV. 1998, 18, 259-296.
(2) Jordan, M. A.; Wilson, L. Microtubules as a Target for Anticancer
Drugs. Nat. ReV. Cancer 2004, 4, 253-265.
(3) (a) Siemann, D. W.; Bibby, M. C.; Dark, G. G.; Dicker, A. P.; Eskens,
F. A. L. M.; Horsman, M. R.; Marme, D.; LoRusso, P. M.
Differentiation and Definition of Vascular-Targeted Therapies. Clin.
Cancer Res. 2005, 11, 416-420. (b) Siemann, D. W. Vascular-
Targeted Therapies in Oncology; John Wiley & Sons: New York,
2006. (c) Gaya, A. M.; Rustin, G. J. Vascular Disrupting Agents: A
New Class of Drug in Cancer Therapy. Clin. Oncol. 2005, 17, 277-
290. (d) Tozer, G. M.; Kanthou, C.; Baguley, B. C. Disrupting tumour
blood vessels. Nat. ReV. Cancer 2005, 5, 423-435. (e) Lippert, J.
W., III. Vascular Disrupting Agents. Bioorg. Med. Chem. 2007, 15,
605-615.
(4) (a) Chaplin, D. J.; Horsman, M. R.; Siemann, D. W. Current
Development Status of Small-Molecule Vascular Disrupting Agents.
Curr. Opin. InVest. Drugs 2006, 7, 522-528. (b) Tron, G. C.; Pirali,
T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. Medicinal
Chemistry of Combretastatin A4: Present and Future Directions. J.
Med. Chem. 2006, 49, 3033-3044. (c) Li, Q.; Sham, H. L. Discovery
and Development of Antimitotic Agents That Inhibit Tubulin
Polymerisation for the Treatment of Cancer. Expert Opin. Ther. Pat.
2002, 12, 1663-1702. (d) Nam, N. H. Combretastatin A-4 Analogues
as Antimitotic Antitumor Agents. Curr. Med. Chem. 2003, 10, 1697-
1722. (e) Hsieh, H. P.; Liou, J. P.; Mahindroo, N. Pharmaceutical
Design of Antimitotic Agents Based on Combretastatins. Curr.
Pharm. Des. 2005, 11, 1655-1677. (f) Mahindroo, N.; Liou, J. P.;
Chang, J. Y.; Hsieh, H. P. Antitubulin Agents for the Treatment of
Cancer-a Medicinal Chemistry Update. Expert. Opin. Ther. Pat.
2006, 16, 647-691. (g) Tron, G. C.; Pagliai, F.; Del Grosso, E.;
Genazzani, A. A.; Sorba, G. Synthesis and Cytotoxic Evaluation of
Combretafurazans. J. Med. Chem. 2005, 48, 3260-3268. (h) Pirali,
T.; Busacca, S.; Beltrami, L.; Imovilli, D.; Pagliai, F.; Miglio, G.;
Massarotti, A.; Verotta, L.; Tron, G. C.; Sorba, G.; Genazzani, A.
A. Synthesis and Cytotoxic Evaluation of Combretafurans, Potential
Scaffolds for Dual-Action Antitumoral Agents. J. Med. Chem.
2006, 49, 5372-5376. (i) Zhang, Q, Peng, Y.; Wang, X. I.; Keenan,
S. M.; Arora, S.; Welsh, W. J. Highly Potent Triazole-Based
Tubulin Polymerization Inhibitors. J. Med. Chem. 2007, 50, 749-
754.
1-Methyl-5-(3′,4′,5′-trimethoxybenzoyl)indole (14). The title
compound was obtained in 84% yield from 10 and iodomethane;
1
mp 119.6-120.8 ˚C. H NMR (400 MHz, CDCl3) δ 3.84 (s, 3H),
3.84 (s, 6H), 3.94 (s, 3H), 6.60 (d, J ) 2.8 Hz, 1H), 7.08 (s, 2H),
7.14 (d, J ) 3.2 Hz, 1H), 7.39 (d, J ) 8.4 Hz, 1H), 7.79 (dd, J )
8.8, 1.6 Hz, 1H), 8.14 (d, J ) 1.6 Hz, 1H). 13C NMR (100 MHz,
CDCl3) δ 33.0, 56.2, 60.8, 102.8, 107.4, 108.9, 123.7, 125.0, 127.5,
129.1, 130.3, 134.1, 138.8, 141.1, 152.6, 196.3. MS (EI) m/z 325
(M+, 100%), 158 (43%). HRMS (EI) calcd for C19H19NO4 (M+),
325.1328; found, 325.1321. Anal. (C19H19NO4) C, H, N.
(5) Chang, J. Y.; Yang, M. F.; Chang, C. Y.; Chen, C. M.; Kuo, C. C.;
Liou, J. P. 2-Amino and 2′-Aminocombretastatin Derivatives as
Potent Antimitotic Agents. J. Med. Chem. 2006, 49, 6412-
6415.
1-Ethyl-5-(3′,4′,5′-trimethoxybenzoyl)indole (15). The title
compound was obtained in 76% yield from 10 and iodoethane; mp
(6) (a) Liou, J. P.; Chang, C. W.; Song, J. S.; Yeh, C. F.; Hung, H. H.;
Liu, S. H.; Hsieh, H. P. Synthesis and Structure-Activity Relation-
ship of 2-Aminobenzophenone Derivatives as Antimitotic Agents.
J. Med. Chem. 2002, 45, 2556-2562. (b) Liou, J. P.; Chang, J. Y.;
Chang, C. W.; Chang, C. Y.; Mahindroo, N.; Hsieh, H. P. Synthesis
and Structure-Activity Relationships of 3-Aminobenzophenones as
Antimitotic Agents. J. Med. Chem. 2004, 47, 2897-2905.
(7) (a) Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cara, C. L.; Preti,
D.; Fruttarolo, F.; Pavani, M. G.; Tabrizi, M. A.; Tolomeo, M.;
Grimaudo, S.; Cristina, A. D.; Balzarini, J.; Hadfield, J. A.; Brancale,
A.; Hamel, E. Synthesis and Biological Evaluation of 2- and
3-Aminobenzo[b]thiophene Derivatives as Antimitotic Agents and
Inhibitors of Tubulin Polymerization. J. Med. Chem. 2007, 50, 2273-
2277. (b) Pinney, K. G.; Bounds A. D.; Dingeman, K. M.; Mocharla,
V. P.; Pettit, G. R.; Bai, R.; Hamel, E. A New Anti-Tubulin Agent
Containing the Benzo[b]thiophene Ring System. Bioorg. Med. Chem.
Lett. 1999, 9, 1081-1086.
1
103.5-104.3 ˚C. H NMR (400 MHz, CDCl3) δ 1.50 (t, J ) 7.6
Hz, 3H), 3.87 (s, 6H), 3.94 (s, 3H), 4.22 (q, J ) 7.6 Hz, 2H), 6.60
(d, J ) 3.2 Hz, 1 H), 7.08 (s, 2H), 7.21 (d, J ) 3.2 Hz, 1H), 7.42
(d, J ) 8.8 Hz, 1H), 7.79 (dd, J ) 8.8, 1.6 Hz, 1H), 8.14 (d, J )
1.6 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 15.4, 41.1, 56.2, 60.8,
102.9, 107.4, 109.0, 123.5, 125.2, 127.7, 128.6, 129.1, 134.1, 137.8,
141.1, 152.6, 196.2. MS (EI) m/z 339 (M+, 85%), 172 (100%).
HRMS (EI) calcd for C20H21NO4 (M+), 339.1463; found, 339.1467.
Anal. (C20H21NO4) C, H, N.
1-Hydroxymethyl-5-(3′,4′,5′-trimethoxybenzoyl)indole (18).
The title compound was obtained in 82% yield from 10 and 37%
1
formaldehyde; mp 162.1-163.2 ˚C. H NMR (400 MHz, CDCl3)
δ 3.82 (s, 6H), 3.93 (s, 3H), 5.65 (s, 2H), 6.57 (d, J ) 3.2 Hz, 1H),
7.02 (s, 2H), 7.26 (d, J ) 3.6 Hz, 1H), 7.48 (d, J ) 8.8 Hz, 1H),