Self-Inclusion of ꢀ-CD Derivatives
Letters in Organic Chemistry, 2009, Vol. 6, No. 8
611
[4]
(a) Khan, A. R.; Forgo, P.; Stine, K. J.; D’Souza, V. T. Chem. Rev.,
1998, 98, 1977; (b) Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.;
Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S. M.; Takaha, T.
Chem. Rev., 1998, 98, 1787; (c) Rekharsky, M. V.; Inoue, Y.
Chem. Rev., 1998, 98, 1875; (d) Lebilla, C. B. Acc. Chem. Res.,
2001, 34, 653; (e) Connors, K. A. Chem. Rev., 1997, 97, 1325.
(a) Yu, L.; Chen, Y. Acc. Chem. Res., 2006, 39, 681; (b) Liu, Y.;
Han, B.; Zhang, H. Curr. Org. Chem., 2004, 8, 35; (c) Liu, Y.;
Zhang, N.; Chen, Y.; Wang, L. H. Org. Lett., 2007, 9, 315.
(a) Taylor, P. N.; O'Connell, M. J.; McNeill, L. A.; Hall, M. J.;
Aplin, R. T.; Anderson, H. L. Angew. Chem. Int. Ed. Engl., 2000,
39, 3456; (b) Cacialli, F.; Wilson, J. S.; Michels, J. J.; Daniel, C.;
Silva, C.; Friend, R. H.; Severin, N.; Samorì, P.; Rabe, J. P.;
O'Connell, M. J.; Taylor, P. N.; Anderson, H. L. Nat. Mater., 2002,
1, 160; (c) Michels, J. J.; O'Connell, M. J.; Taylor, P. N.; Wilson, J.
S.; Cacialli, F.; Anderson, H. L. Chem.-Eur. J., 2003, 9, 6167.
Nepal, D.; Samal, S.; Geckeler, K. E. Macromolecules, 2003, 36,
3800.
Farcus, A.; Grigoras, M. Polymer Int., 2003, 52, 1312.
Okumura, H.; Kawaguchi, Y.; Harada, A. Macromol. Rapid
Commun., 2002, 23, 781.
Liu, Y.; Zhao, Y.; Zhang, H.; Li, X.; Liang, P.; Zhang, X.; Xu, J.
Macromolecules, 2004, 37, 6362..
Van den Boogaard, M.; Bonnet, G.; van’t Hof, P.; Wang, Y.;
Brochon, C.; van Hutten, P.; Lapp, A.; Hadziioannou, G. Chem.
Mater., 2004, 16, 4383.
(a) Szejtli, J. Chem. Rev., 1998, 98, 1743; (b) Harata, K. Chem.
Rev., 1998, 98, 1803.
(a) Clark, J. L.; Stezowski, J. J. J. Am. Chem. Soc., 2001, 123,
9880; (b) Alexander, J. M.; Clark, J. L.; Brett, T. J.; Stezowski, J. J.
Proc. Natl. Acad. Sci. USA, 2002, 99, 5115.
(a) Udachin, K. A.; Ripmeester, J. A. J. Am. Chem. Soc., 1998,
120, 1080; (b) Udachin, K. A.; Wilson, L. D.; Ripmeester, J. A. J.
Am. Chem. Soc., 2000, 122, 12375.
Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Song, H. B. Angew. Chem. Int.
Ed. Engl., 2003, 42, 3260.
Kamitori, S.; Matsuzaka, O.; Kondo, S.; Muraoka, S.; Okuyama,
K.; Noguchi, K.; Okada, M.; Harada, A. Macromolecules, 2000,
33, 1500.
(a) Hamilton, J. A.; Chen, L. J. Am. Chem. Soc., 1988, 110, 4379;
(b) Hamilton, J. A.; Chen, L. J. Am. Chem. Soc., 1988, 110, 5833.
(a) Onagi, H.; Carrozzini, B.; Cascarano, G. L.; Easton, C. J.;
Edwards, A. J.; Lincoln, S. F.; Rae, A. D. Chem. Eur. J., 2003, 9,
5971; (b) Onagi, H.; Blake, C. J.; Easton, C. J.; Lincoln, S. F.
Chem. Eur. J., 2003, 9, 5978.
Terao, J.; Tang, A.; Michels, J. J.; Krivokapic, A.; Anderson, H. L.
Chem. Commun., 2004, 56.
Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Fan, Z.; Wen, G. D.; Ding, F.
J. Phys. Chem. B, 2004, 108, 8836.
131.5, 149.4. MS (MALDI) calcd for C64H83O34N: 1409.5,
found 1432.6 (M + Na+).
X-Ray Single Crystal Structure Analysis
[5]
[6]
A colorless needle-shaped crystal of dimensions 0.40 x
0.08 x 0.06 mm was selected for structural analysis. Intensity
data for this compound were collected using a Bruker APEX
ccd area detector using graphite-monochromated Mo Kꢀ
radiation (ꢁ = 0.71073 Å) [35]. The sample was cooled to
100(2) K. The intensity data were measured as a series of ꢂ
oscillation frames each of 0.3 ° for 60 sec / frame. Coverage
of unique data was 99.8 % complete to 21.97 degrees in ꢃ.
Cell parameters were determined from a non-linear least
squares fit of 7740 peaks in the range 2.36 < ꢃ < 22.87°. A
total of 33612 data were measured in the range 2.14 < ꢃ <
21.97°. The data were corrected for absorption by the semi-
empirical method giving minimum and maximum
transmission factors of 0.6772 and 0.9393 [36]. The data
were merged to form a set of 15478 independent data with
R(int) = 0.0630.
[7]
[8]
[9]
[10]
[11]
[12]
[13]
The monoclinic space group P21 was determined by
systematic absences and statistical tests and verified by
subsequent refinement. The structure was solved by direct
methods and refined by full-matrix least-squares methods on
F2 [37]. Hydrogen atom positions were initially determined
by geometry and refined by a riding model. Non-hydrogen
atoms were refined with anisotropic displacement
parameters. Hydrogen atom displacement parameters were
set to 1.2 (1.5 for methyl) times the displacement parameters
of the bonded atoms. A total of 1698 parameters were
refined against 1623 restraints and 15478 data to give
wR(F2) = 0.2106 and S = 1.035 for weights of w = 1/[ꢄ2 (F2)
[14]
[15]
[16]
[17]
[18]
+ (0.1270 P)2 + 24.9400 P], where P = [Fo + 2Fc ] / 3. The
final R(F) was 0.0795 for the 12733 observed, [F > 4ꢄ(F)],
data. The largest shift/s.u. was 0.001 in the final refinement
cycle. The final difference map had maxima and minima of
2
2
[19]
[20]
[21]
[22]
3
1.677 and -1.078 e/Å , respectively. The absolute structure
was determined by refinement of the Flack parameter [38].
The polar axis restraints were taken from Flack and
Schwarzenbach [39]. CCDC-246676 contains the
supplementary crystallographic data for this paper. These
data can be obtained free of charge via www.ccdc.
cam.ac.uk/conts/retrieving.html (or from the Cambridge
Crystallographic Data Center, 12 Union Road, Cambridge
CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.
cam.ac.uk).
Yoon, J.; Hong, S.; Martin, K. A.; Czarnic, A. W. J. Org. Chem.,
1995, 60, 2792.
(a) Martin, K. A.; Czarnic, A. W. Tetrahedron Lett., 1994, 35,
6781; (b) Huff, J. B.; Bieniarz, C. J. J. Org. Chem., 1994, 59, 7511;
(c) Cornwell, M. J.; Huff, J. B.; Bieniarz, C. Tetrahedron Lett.,
1995, 36, 8371.
Rong, D.; Ye, H.; Boehlow, R.; D’Souza, V. T. J. Org. Chem.,
1992, 57, 163.
(a) Kajtar, M.; Horvath, T. C.; Kuthi, E.; Szejtli, J. Acta Chim.
Acad. Sci. Hung., 1982, 10, 327; (b) Kodaka, M. J. Am. Chem.
Soc., 1993, 115, 3702; (c) Bright, F. V.; Catena, G. C. Anal. Chem.,
1989, 61, 905.
[23]
[24]
[25]
[26]
(a) Zhang, X.; Nau, W. M. Angew. Chem. Int. Ed. Engl., 2000, 39,
544; (b) Liu, Y. ; Song, Y.; Chen, Y.; Yang, Z. X.; Ding, F. J.
Phys. Chem. B, 2005, 109, 10717.
(a) Ueno, A.; Ikeda, A.; Ikeda, H.; Ikeda, T.; Toda, F. J. Org.
Chem., 1999, 64, 382; (b) Hamasaki, K.; Ikeda, H.; Nakamura, A.;
Ueno, A.; Toda, F.; Suzuki, I.; Osa, T. J. Am. Chem. Soc., 1993,
115, 5035; (c) Kuwabara, T.; Nakamura, A.; Ueno, A.; Toda, F. J.
Phys. Chem., 1994, 98, 6297.
ACKNOWLEDGEMENTS
We thank Dr. Douglas R. Powel of the University of
Kansas for the X-ray crystal structure determination.
REFERENCES
[27]
[28]
Yoon, J.; Hong, S.; Martin, K. A.; Czarnic, A. W. J. Org. Chem.,
1995, 60, 2792.
[1]
Szejtli, J. Cyclodextrin Technology, Kluwer Academic Publishers:
Dordrecht, 1988.
Wenz, G. Angew. Chem., Int. Ed. Engl., 1994, 33, 803.
Szejtli, J.; Osa, T. In: Comprehensive Supramolecular Chemistry;
Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vögtle, F.; Eds.
Elsevier: Oxford, UK, 1996, Vol. 3.
(a) Liu, Y.; Han, B. H.; Li, B.; Zhang, Y. M.; Zhao, P.; Chen, Y.
T.; Wada, T.; Inoue, Y. J. Org. Chem., 1998, 63, 1444; (b) Liu, Y.;
You, C. C.; Zhang, M.; Weng, L. H.; Wada, T.; Inoue, Y. Org.
Lett., 2000, 2, 2761; (c) Liu, Y.; You, C. C.; Kunieda, M.;
Nakamura, A.; Wada, T.; Inoue, Y. Supramol. Chem., 2000, 12,
299; (d) Liu, Y.; Fan, Z.; Zhang, H.; Diao, C. Org. Lett., 2003, 5,
[2]
[3]