248
J Incl Phenom Macrocycl Chem (2011) 71:243–248
12. Voet, D., Voet, J.G.: Biochemistry, 2nd edn. Wiley, New York
(1995)
complementarity of naphthyridine in 1 with carboxylic acid
of N-acetyl amino acid, receptor 1 exhibits its much pref-
erence for carboxylates by showing significant change in
emission titration spectra. Experimental findings reveal that
our naphthyridine-based simple receptor can be useful in
the fluorometric distinction of N-acetyl amino acid salt
over their conjugate acids. This has a strong relevance with
the function of active site of an enzyme. Among the
anionic guests examined in the present study, N-acetyl-L-
proline salt shows preference toward the open cleft of 1
involving cooperative hydrogen bonding interactions with
the urea and amide motifs in a compact manner. Calcula-
tion performed at the DFT level of theory explained the
cooperativity in the binding process. The greater quenching
of emission and higher binding constant value as deter-
mined altogether underline the selective sensing of
N-acetyl-L-proline salt. Further study along this direction is
in progress in our laboratory.
13. Bush, M.E., Bouley, N.D., Urbach, A.R.: Charge-mediated rec-
ognition of N-terminal tryptophan in aqueous solution by a syn-
thetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005)
14. Schmuck, C., Geiger, L.: Efficient complexation of N-acetyl
amino acid carboxylates in water by an artificial receptor:
unexpected cooperativity in the binding of glutamate but not
aspartate. J. Am. Chem. Soc. 127, 10486–10487 (2005) and
references cited therein
15. Fitzmaurice, J., Gaggini, F., Srinivasan, N., Kilburn, J.D.: Car-
boxylate binding in polar solvents using pyridylguanidinium
salts. Org. Biomol. Chem. 5, 1706–1714 (2007)
16. Vicent, C., Fan, E., Hamilton, A.D.: Molecular recognition:
directed hydrogen bonding receptors for acylamino acids and
carboxylates. Tetrahedron Lett. 33, 4269–4272 (1992) and ref-
erences cited therein
17. Kim, Y.K., Lee, H.N., Singh, N.J., Choi, H.J., Xue, J.Y., Kim,
K.S., Yoon, J., hyun, M.H.: Anthracene derivatives bearing
thiourea and glucopyranosyl groups for the highly selective chiral
recognition of amino acids: opposite chiral selectivities from
similar binding units. J. Org. Chem. 73, 301–304 (2008)
18. Ghosh, K., Masanta, G., Chattopadhyay, A.P.: Anthracene-based
ureidopyridyl fluororeceptor for dicarboxylates. Tetrahedron Lett.
48, 6129–6132 (2007)
Acknowledgments We thank CSIR, New Delhi, India for financial
support. T.S thanks CSIR, New Delhi, India for providing fellowship.
We also thank the reviewer for constructive criticism.
19. Ghosh, K., Sarkar, A.R.: Anthracene-based macrocyclic fluores-
cent chemosensor for selective sensing of dicarboxylate. Tetra-
hedron Lett. 50, 85–88 (2009)
20. Ghosh, K., Sarkar, A.R., Masanta, G.: An anthracene based bi-
spyridinium amide receptor for selective sensing of anions. Tet-
rahedron Lett. 48, 8725–8729 (2007)
21. Ghosh, K., Masanta, G., Chattopadhyay, A.P.: Triphenylamine-
based pyridine N-oxide and pyridinium salts for size-selective
recognition of dicarboxylates. Eur. J. Org. Chem. 26, 4515–4524
(2009) and references cited therein
22. Ma, Y., Kolotuchin, S.V., Zimmerman, S.C.: Supramolecular
polymer chemistry: Self-assembling dendrimers using the
DDA.AAD (GC-like) hydrogen bonding motif. J. Am. Chem.
Soc. 124, 13757–13769 (2002)
23. Goswami, S., Mukherjee, R.: Molecular recognition: a simple
dinaphthyridine receptor for urea. Tetrahedron Lett. 38,
1619–1622 (1997)
References
1. Schmidtchen, F.P., Berger, M.: Artificial organic host molecules
for anions. Chem. Rev. 97, 1609–1646 (1997)
2. Martinez-Manez, R., Sancenon, F.: Fluorogenic and chromogenic
chemosensors and reagents for anions. Chem. Rev. 103,
4419–4476 (2003)
3. Kondo, I.S., Hiroka, Y., Kurmatani, N., Yano Y.: Selective rec-
ognition of dihydrogen phosphate by receptors bearing pyridyl
moieties as hydrogen bond acceptors. Chem. Commun. 1720–1722
(2005)
4. Bell, T.W., Hext, N.M.: Supramolecular optical chemosensors for
organic analytes. Chem. Soc. Rev. 33, 589–598 (2004)
5. Yuasa, H., Miyagawa, N., Izumi, T., Nakatani, M., Izumi, M.,
Hashimoto, H.: Hinge sugar as a movable component of an ex-
cimer fluorescence sensor. Org. Lett. 6, 1489–1492 (2004)
6. Xue, L., Liu, Q., Jiang, H.: Ratiometric Zn2? fluorescent sensor
and new approach for sensing Cd2? by ratiometric displacement.
Org. Lett. 11, 3454–3457 (2009)
7. Gale, P.A.: Anion and ion pair chemistry: highlights from 2000
and 2001. Coord. Chem. Rev. 240, 191–221 (2003)
8. Spichiger-Keller, U.S.: Chemical Sensors and Biosensors for
Medical and Biological Applications. Wiley-VCH, Weinheim
(1998)
24. Herranz, F., Santa Maria, M.D., Claramunt, R.M.: Molecular
recognition: Improved binding of biotin derivatives with syn-
thetic receptors. J. Org. Chem. 71, 2944–2951 (2006)
25. Ghosh, K., Sen, T., Frohlich, R.: A naphthyridine-based receptor
for sensing citric acid. Tetrahedron Lett. 48, 2935–2938 (2007)
26. Job, P.: Formation and stability of inorganic complexes in solu-
tion. Ann. Chim. 9, 113 (1928)
27. Valeur, B., Pouget, J., Bourson, J., Kaschke, M., Eensting, N.P.:
Tuning of photoinduced energy transfer in a bichromophoric
coumarin supermolecule by cation binding. J. Phys. Chem. 96,
6545–6549 (1992)
28. Frisch, M.J., et al.: Gaussian 03, Revision C.01. Gaussian, Inc.,
Wallingford (2004)
´
9. Gale, P.A., Garcıa-Garrido, S.E., Garric, J.: Anion receptors
29. Becke, D.: Density-functional thermochemistry.3. The role of
exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
30. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab
Initio calculation of vibrational absorption and circular dichroism
spectra using density functional force fields. J. Phys. Chem. 98,
11623–11627 (1994)
based on organic frameworks: highlights from 2005 and 2006.
Chem. Soc. Rev. 37, 151–190 (2008)
10. Gale, P.A.: Anion receptor chemistry: highlights from 1999.
Coord. Chem. Rev. 213, 79–128 (2001)
11. Gunnlaugsson, T., Glynn, M., Tocci, G.M., Kruger, P.E., Pfeffer,
F.M.: Anion recognition and sensing in organic and aqueous
media using luminescent and colorimetric sensors. Coord. Chem.
Rev. 250, 3094–3117 (2006) and references cited therein
31. MM2 calculation was done using CS Chem 3D version 7.0
123