C O M M U N I C A T I O N S
Table 1. Phase Transition Temperatures and Enthalpies [In
meta series has an internal hydrogen to hydrogen distance of about
8 Å, while the spacing-filling molecular model of M1 in Figure 3c
shows the internal cavity is extremely small, approximately 2.4 Å
across the macrocycle. In addition to the central cavity size
distinction, the connectivity of the ortho versus meta series leads
to differences in the nature of conjugation for the two systems.
This work shows clearly that electron-rich PE macrocycles can form
LC materials.
Parentheses] for Macrocycles M1, M2, and M3 as Determined by
a
DSC (scan rate ) 10 °C min-1
)
1
a
T (oC) [ Ht, J g-
∆ ]
compound
heating (oC)
cooling (oC)
M1
M2
M3
Colr 81 [2.5] I
Colh 55 [12.4] I
ND 54 [2.2] I
I 44 [3.9] Colr
I 55 [13.0) Colh
I 52 [1.7] ND
In summary, novel LC materials are reported based on ortho-
PE macrocycles for the first time. The macrocycle M1 contains
short alkyl side chains. Alternatively, if the side chain is hydrophilic,
as is the case with M2, then the amphiphilicity provides a driving
force for organization. These structures demonstrate two side chain
chemistries for creating self-assembling materials from ortho-PE
macrocycles. The ability to create ordered self-assembling materials
from these novel electron-rich macrocycles is important in nano-
technology and may enable new materials for applications in
membranes and electronics.
a Colr, rectangular columnar; Colh, hexagonal columnar; ND, discotic
nematic; I, isotropic.
Acknowledgment. We thank the NSF for financial support
(NSF-CAREER CHE-0449663 and MRSEC-DMR 9400488), BK
21 Project, HOMRC to S.H.S., and Ford Foundation (T.V.J.).
Supporting Information Available: Experimental procedures of
macrocycles. including synthesis, UV-vis spectra, and XRD of M3 at
room temperatures. This material is available free of charge via the
References
(1) (a) Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413. (b) Faust, R. Angew.
Chem., Int. Ed. Engl. 1991, 30, 2825-2828. (c) Bunz, U. H. F.; Rubin,
Y.; Tobe, Y. Chem. Soc. ReV. 1999, 28, 107-119. (d) Ho¨ger, S. J. Polym.
Sci. Part A: Polym. Chem. 1999, 37, 2685-2698. (e) Haley, M. M.; Pak,
J. J.; Brand, S. C. Top. Curr. Chem. 1999, 201, 81-130. (f) Shotwell, S.;
Windscheif, P. M.; Smith, M. D.; Bunz, U. H. F. Org. Lett. 2004, 6, 4151-
4154. (g) Ho¨ger, S.; Morrison, D. L.; Enkelmann, V. J. Am. Chem. Soc.
2002, 124, 6734-6736. (h) Ho¨ger, S.; Rosselli, S.; Ramminger, A.-D.;
Enkelmann, V. Org. Lett. 2002, 4, 4269-4272. (i) Youngs, W. J.; Tessier,
C. A.; Bradshaw, J. D. Chem. ReV. 1999, 99, 3153-3180. (j) Zhang, D.;
Tessier, C. A.; Youngs, W. J. Chem. Mater. 1999, 11, 3050-3057. (k)
Kehoe, J. M.; Kiley, J. H.; English, J. J.; Johnson, C. A.; Petersen, R. C.;
Haley, M. M. Org. Lett. 2000, 2, 969-972.
(2) (a) Collings, P. J.; Hird, M. In Introduction to Liquid Crystals Chemistry
and Physics; Taylor & Francis: London, 1997; pp 43-81. (b) Brunsveld,
L.; Zhang, H.; Glasbeek, M.; Veckmans, J. A. J. M.; Meijer, E. W. J.
Am. Chem. Soc. 2000, 122, 6175-6182. (c) Chang, J. Y.; Baik, J. H.;
Lee, C. B.; Han, M. J.; Hong, S.-K. J. Am. Chem. Soc. 1997, 119, 3197-
3198. (d) Lee, H.-K.; Lee, H.; Ko, Y. H.; Chang, Y. J.; Oh, N.-K.; Zin,
W.-C.; Kim, K. Angew. Chem., Int. Ed. 2001, 40, 2669-2671. (e)
Yelamaggad, C. V.; Achalkumar, A. S.; Shankar Rao, D. S.; Prasad, S.
K. J. Am. Chem. Soc. 2004, 126, 6506-6507. (f) Zeng, X.; Ungar, G.;
Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Nature 2004, 428, 157-
160. (g) Xu, Y.; Gu, W.; Gin, D. L. J. Am. Chem. Soc. 2004, 126, 1616-
1617.
(3) (a) Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1992, 114, 9701-9702. (b)
Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1994, 116, 2655-2656. (c)
Tobe, Y.; Utsumi, N.; Nagano, A.; Naemura, K. Angew. Chem., Int. Ed.
1998, 37, 1285-1287. (d) Tobe, Y.; Nagano, A.; Kawabata, K.; Sonoda,
M.; Naemura, K. Org. Lett. 2000, 2, 3265-3568. (e) Ho¨ger, S.; Bonrad,
S.; Mourran, A.; Beginn, U.; Mo¨ller, M. J. Am. Chem. Soc. 2001, 123,
5651-5659. (f) Tobe, Y.; Utsumi, N.; Kawabata, K.; Nagano, A.; Adachi,
K.; Araki, S.; Sonoda, M.; Hirose, K.; Naemura, K. J. Am. Chem. Soc.
2002, 124, 5350-5364. (g) Ho¨ger, S.; Enkelmann, V.; Bonrad, K.;
Tschierske, C. Angew. Chem., Int. Ed. 2000, 39, 2268-2270.
(4) (a) Jones, T. V.; Blatchly, R. A.; Tew, G. N. Org. Lett. 2003, 5, 3297-
3299. (b) Blatchly, R. A.; Tew, G. N. J. Org. Chem. 2003, 68, 8780-
8785. (c) Jones, T. V.; Slutsky, M. M.; Laos, R.; de Greef, T. F. A.; Tew,
G. N. J. Am. Chem. Soc. 2005, 127, 17235-17240.
Figure 3. X-ray diffractograms for the (a) rectangular columnar phase of
M1, (b) hexagonal columnar phase of M2 obtained at room temperature,
(c) CPK model (top view) of macrocycle M1 created in Spartan, Wave-
function, Inc., and (d) schematic representation of the Colr phases. The
asterisks (/) denote diffraction peaks of the imide film used as substrate.
The XRD profile of M2 (Figure 3b) shows four main sharp
reflection peaks corresponding to d spacings of 20.6, 12.1, 10.4,
and 7.8 Å, which were indexed in sequence as (100), (110), (200),
and (210) of a Colh lattice with the lattice parameter of a ) 23.8
Å. Similar molecular calculations determined the diameter of M2
to be 36 Å, suggesting that the longer unbranched but polar
triethylene glycol tails are interdigitated. The XRD profile of M3
(see Supporting Information) shows one broad reflection peak
corresponding to the d spacing of 44 Å, which is attributed to the
average distance between macrocycles of a discotic nematic LC.
These XRD results show that the symmetric macrocycles M1 and
M2 self-assemble into highly ordered columnar structures, in
contrast to the asymmetrically substituted macrocycle M3, which
is less ordered. These are the first LC materials reported from
substituted o-PE macrocycles, to the best of our knowledge.
A survey of the literature3b provides a series of meta-based PE
(m-PE) macrocycles that make an excellent comparison to the o-PE
macrocycles reported here. Moore showed that a m-PE macrocycle
containing heptyl chains connected to the carbon-rich backbone
through ether functionality formed a discotic nematic phase at
elevated temperature as opposed to any other LC phase. Only the
electronically mixed system (a macrocycle containing three ethers
and three esters) formed a more ordered discotic phase. In contrast,
macrocycle M1 forms a well ordered Colr phase with more than
seven reflections in the XRD. One of the most striking differences
between these two macrocycles is the void space of the central
cavity which may inhibit column formation in the meta series. The
(5) (a) Ge, P.-H.; Fu, W.; Herrman, W. A.; Herdtweck, E.; Campana, C.;
Adams, R. D.; Bunz, U. H. F. Angew. Chem., Int. Ed. 2000, 39, 3607-
3610. (b) Miljanic, O. S.; Vollhardt, K. P. C.; Whitener, G. D. Synlett
2003, 29-34. (c) Zhang, W.; Moore, J. S. J. Am. Chem. Soc. 2004, 126,
12796. (d) Zhang, W.; Brombosz, S. M.; Mendoza, J. L.; Moore, J. S. J.
Org. Chem. 2005, 70, 10198-10201.
JA060354B
9
J. AM. CHEM. SOC. VOL. 128, NO. 29, 2006 9265