Beilstein J. Org. Chem. 2017, 13, 2385–2395.
12.Withers, S. G. Carbohydr. Polym. 2001, 44, 325–337.
deficient pyridinium salt and an aryl thiourea derivative.
1H NMR studies divulge that a 1,2-adduct formation between
the electron-deficient pyridinium salt and the glycosyl acceptor
plays a crucial role for the activation of the trichloroacetimidate
donors. The presence of thiourea derivatives further enhances
the reaction rate and selectivity due to its dual hydrogen bond-
ing ability. The reaction proceeds smoothly at room tempera-
ture with good to excellent yields and α-selectivity and is
applicable to a wide range of glycosyl donors as well as accep-
tors. The advantage of this methodology lies in the usage of an
environmentally benign catalyst, mild reaction conditions and
the regioselective formation of O-glycosides.
13.Lopez, X.; Mujika, J. I.; Blackburn, G. M.; Karplus, M. J. Phys. Chem. A
14.MacMillan, D. W. C. Nature 2008, 455, 304–308.
15.Gröger, H.; Wilken, J. Angew. Chem., Int. Ed. 2001, 40, 529–532.
16.Balmond, E. I.; Galan, M. C.; McGarrigle, E. M. Synlett 2013,
17.Vedachalam, S.; Tan, S. M.; Teo, H. P.; Cai, S.; Liu, X.-W. Org. Lett.
18.Berkessel, A.; Groeger, H. Asymmetric Organocatalysis: from
Biomimetic Concepts to Applications in Asymmetric Synthesis;
Wiley-VCH, 2005.
ISBN: 978-3-527-30517-9.
Supporting Information
19.Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D.
20.Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806–9807.
Supporting Information File 1
Experimental procedures and analytical data.
21.Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,
22.Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157–160.
23.Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem.
Acknowledgements
This work was supported by SERB New Delhi – SB/FT/CS-
069/2014 and the Indian Institute of Technology Patna. M.S.
thanks IIT Patna for providing a research fellowship. The author
acknowledges IIT Patna, BITS Pilani, SAIF-CDRI Lucknow for
providing the analytical facility.
24.Weil, T.; Kotke, M.; Kleiner, C. M.; Schreiner, P. R. Org. Lett. 2008, 10,
25.Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187–1198.
26.Zhang, Z.; Lippert, K. M.; Hausmann, H.; Kotke, M.; Schreiner, P. R.
27.Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887–890.
ORCID® iDs
28.Uraguchi, D.; Ueki, Y.; Ooi, T. Science 2009, 326, 120–123.
References
1. Peng, P.; Schmidt, R. R. Acc. Chem. Res. 2017, 50, 1171–1183.
29.Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R. Chem. Rev. 2016, 116,
30.Geng, Y.; Kumar, A.; Faidallah, H. M.; Albar, H. A.; Mhkalid, I. A.;
Schmidt, R. R. Angew. Chem., Int. Ed. 2013, 52, 10089–10092.
2. Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900–1934.
4. Doores, K. J.; Gamblin, D. P.; Davis, B. G. Chem. – Eur. J. 2006, 12,
31.Palo-Nieto, C.; Sau, A.; Williams, R.; Galan, M. C. J. Org. Chem. 2017,
32.Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–235.
5. Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.;
Jacobsen, E. N. Science 2017, 355, 162–166.
33.Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18,
6. Seeberger, P. H. Acc. Chem. Res. 2015, 48, 1450–1463.
34.Mensah, E. A.; Azzarelli, J. M.; Nguyen, H. M. J. Org. Chem. 2009, 74,
7. Nigudkar, S. S.; Demchenko, A. V. Chem. Sci. 2015, 6, 2687–2704.
35.Roy, R.; Palanivel, A. K.; Mallick, A.; Vankar, Y. D. Eur. J. Org. Chem.
8. Shaw, M.; Kumar, A.; Thakur, R. Trends Carbohydr. Res. 2017, 9,
1–28.
36.Kumar, A.; Kumar, V.; Dere, R. T.; Schmidt, R. R. Org. Lett. 2011, 13,
9. Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503–1531.
37.Portenkirchner, E.; Enengl, C.; Enengl, S.; Hinterberger, G.;
Schlager, S.; Apaydin, D.; Neugebauer, H.; Knör, G.; Sariciftci, N. S.
38.Das, S.; Pekel, D.; Neudörfl, J.-M.; Berkessel, A.
Angew. Chem., Int. Ed. 2015, 54, 12479–12483.
10.Davis, B. G. J. Chem. Soc., Perkin Trans. 1 2000, 2137–2160.
11.Crout, D. H. G.; Vic, G. Curr. Opin. Chem. Biol. 1998, 2, 98–111.
2394