biaryls, has been realized in several examples, e.g., nickel-
or palladium-catalyzed cross-coupling of unfunctionalized
2,6-disubstituted arenes,3,4b oxidative homo-coupling of
2-naphthol derivatives,5 and Grignard cross-coupling of
dibenzothiophenes.7 However, the efficient catalytic method,
which can be applicable to the enantioselective synthesis of
functionalized axially chiral tetra-ortho-substituted biaryls,
is an important challenge.
Recently, a new approach to the synthesis of axially chiral
tri-ortho-substituted biaryls has been developed, which is
based on an enantioselective [2 + 2 + 2] cycloaddition10,11
between internal alkynes bearing an ortho-substituted phenyl
group and nitriles,12 isocyanates,13 or alkynes.14-18 We
anticipated that an enantioselective two-step synthesis of C2
symmetric tetra-ortho-substituted axially chiral biaryls could
be realized through double [2 + 2 + 2] cycloaddition of
electron-deficient 1,6-diynes, prepared in one step from
readily available terminal 1,6-diynes, with 1,3-diynes (Scheme
1, Type-1) or ether-linked tetraynes, prepared in one step
munication, we describe an enantioselective synthesis of
functionalized tetra-ortho-substituted axially chiral biaryls
through rhodium-catalyzed double [2 + 2 + 2] cycloaddition.
We first investigated the reaction of electron-deficient
malonate-derived 1,6-diyne 1a and 1,3-diyne 2a in the
presence of various Rh(I)+/modified-BINAP complexes
(Type-1).20 We were pleased to find that the use of 5% Rh-
(I)+/(S)-Segphos [(4,4′-bi-1,3-benzodioxole)-5,5′-diylbis-
(diphenylphosphine)]21 complex furnished the corresponding
C2 symmetric tetra-ortho-substituted biaryl (-)-3aa in 59%
yield with >99% ee (Table 1, entry 1). Not only diacetoxy-
Table 1. Enantioselective Synthesis of C2 Symmetric
Tetra-ortho-Substituted Axially Chiral Biaryls 3
Scheme 1. Enantioselective Two-Step Synthesis of C2
Symmetric Tetra-ortho-Substituted Axially Chiral Biaryls
a Isolated yield. b Isolated yield of mono-annulation product 4 (Scheme
2).
substituted 2,4-hexadiyne 2a but also dimethoxy-substituted
(10) For recent reviews, see: (a) Kotha, S.; Brahmachary, E.; Lahiri, K.
Eur. J. Org. Chem. 2005, 4741. (b) Yamamoto, Y. Curr. Org. Chem. 2005,
9, 503. (c) Varela, J.; Saa´, C. Chem. ReV. 2003, 103, 3787. (d) Saito, S.;
Yamamoto, Y. Chem. ReV. 2000, 100, 2901. (e) Malacria, M.; Aubert, C.;
Renaud J. L. In Science of Synthesis: Houben-Weyl Methods for Molecular
Transformations; Lautens, M., Trost, B. M., Eds.; Georg Thieme Verlag:
New York, 2001; Vol. 1, pp 439-530. (f) Fujiwara, M.; Ojima, I. In Modern
Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley: New
York, 2005; Chapter 7, pp 129-150.
(11) For chirality transfer benzannulation, see: (a) Vorogushin, A. V.;
Wulff, W. D.; Hansen, H.-J. J. Am. Chem. Soc. 2002, 124, 6512. (b) Nishii,
Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126,
5358.
from readily available 2,4-hexadiyne-1,6-diol, with electron-
deficient monoynes (Scheme 1, Type-2).19 In this Com-
Jiang, Y. Angew. Chem., Int. Ed. 2002, 41, 4532. (l) Chu, C.-Y.; Uang,
B.-J. Tetrahedron: Asymmetry 2003, 14, 53. (m) Li, X.; Hewgley, J. B.;
Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68,
5500 and references therein.
(12) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg,
A.; Sundermann, B.; Sundermann, C. Angew. Chem., Int. Ed. 2004, 43,
3795.
(6) For cross-coupling of biaryl ditriflates, see: (a) Hayashi, T.; Niizuma,
S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc. 1995, 117,
9101. (b) Kamikawa, T.; Uozumi, Y.; Hayashi, T. Tetrahedron Lett. 1996,
37, 3161. (c) Kamikawa, T.; Hayashi, T. Tetrahedron 1999, 55, 3455.
(7) For asymmetric ring-opening of dinaphthothiophene by Grignard
cross-coupling, see: (a) Shimada, T.; Cho, Y.-H.; Hayashi, T. J. Am. Chem.
Soc. 2002, 124, 13396. (b) Cho, Y.-H.; Kina, A.; Shimada, T.; Hayashi, T.
J. Org. Chem. 2004, 69, 3811.
(8) For asymmetric ring-opening of biaryl lactones, see: (a) Bringmann,
G.; Breuning, M.; Tasler, S. Synthesis 1999, 525. (b) Bringmann, G.;
Breuning, M.; Pfeifer, R.-M.; Schenk, W. A.; Kamikawa, K.; Uemura, M.
J. Organomet. Chem. 2002, 661, 31. (c) Bringmann, G.; Tasler, S.; Pfeifer,
R.-M.; Breuning, M. J. Organomet. Chem. 2002, 661, 49.
(13) Tanaka, K.; Wada, A.; Noguchi, K. Org. Lett. 2005, 7, 4737.
(14) For Ir, see: (a) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J.
Am. Chem. Soc. 2004, 126, 8382. (b) Shibata, T.; Tsuchikama, K. Chem.
Commun. 2005, 6017.
(15) For Rh, see: (a) Tanaka, K.; Nishida. G.; Wada, A.; Noguchi, K.
Angew. Chem., Int. Ed. 2004, 43, 6510. (b) Tanaka, K.; Nishida, G.; Ogino,
M.; Hirano, M.; Noguchi, K. Org. Lett. 2005, 7, 3119.
(16) For enantioselective synthesis of axially chiral anilides through Rh-
catalyzed [2 + 2 + 2] cycloaddition, see: Tanaka, K.; Takeishi, K.;
Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586.
(17) For Rh(I)+/modified-BINAP-catalyzed chemo- and regioselective
intermolecular alkyne cyclotrimerization, see: (a) Tanaka, K.; Shirasaka,
K. Org. Lett. 2003, 5, 4697. (b) Tanaka, K.; Toyoda, K.; Wada, A.;
Shirasaka, K.; Hirano, M. Chem. Eur. J. 2005, 11, 1145.
(9) For utilization of planar chiral arene chromium complex, see: (a)
Watanabe, T.; Tanaka, Y.; Shoda, R.; Sakamoto, R.; Kamikawa, K.; Uemura,
M. J. Org. Chem. 2004, 69, 4152. (b) Kamikawa, K.; Sakamoto, T.; Tanaka,
Y.; Uemura, M. J. Org. Chem. 2003, 68, 9356 and references therein.
(18) For pioneering work for rhodium-catalyzed cross-alkyne cyclotri-
merization, see: (a) Mu¨ller, E. Synthesis 1974, 761. (b) Grigg, R.; Scott,
R.; Stevenson, P. J. Chem. Soc., Perkin Trans. 1 1988, 1357.
3490
Org. Lett., Vol. 8, No. 16, 2006