attack of the ylidic carbon on the imine carbon atom, with
elimination of a sulfoxide3b,c or decomposition from a metal-
containing six-membered ring transition state.3d,e,g Another
proposed mechanism is the degradation of a pentacoordinate
1,2-thiazetidine, the [2 + 2]-cycloadducts of an oxosulfonium
ylide and an imine.3e However, the intermediate of the aza-
Corey-Chaykovsky reaction has neither been observed nor
isolated, and the reaction mechanism has not yet been
elucidated.
aniline (1.1 equiv), and an aqueous solution of NH4Cl gave
â-aminoalkyl sulfide 4 (76%), which was converted to 5 with
(n-Bu)4NF (0.84 equiv) (84%) (Scheme 1). The oxidation
Scheme 1. Syntheses of 1,2-Thiazetidines 8 and 9
As a continuation of our work on the four-membered ring
compounds bearing a highly coordinate chalcogen atom,6 we
previously demonstrated the oxirane formation reactions of
tetracoordinate 1,2-oxathietanes 16b and pentacoordinate 1,2-
oxathietanes 26c,d bearing the Martin ligand,7 which are the
[2 + 2]-cycloadducts of a sulfonium ylide and an oxosul-
fonium ylide with a carbonyl compound, respectively (Figure
1). Because some reports have advocated the contribution
Figure 1. Tetracoordinate and pentacoordinate 1,2-oxathietanes 1
and 2 and anti-betaines.
of 5 with m-CPBA (2.0 equiv) in chloroform gave sulfoxide
6 (32%), sulfone 7 (27%), and tetracoordinate 1λ4,2-
thiazetidine 8 (15%). Compounds 6 and 8 were obtained as
a single diastereomer, although the stereochemistry of 6 has
not been determined. Oxidation of 8 with 4.0 equiv of RuO4
in CCl4 at room temperature gave the corresponding oxidized
product, pentacoordinate 1,2-thiazetidine 9 (15%), with
recovery of 8 (74%).11 Either prolonged stirring or heating
at higher temperatures in the last reaction resulted in the
formation of unidentified byproducts, which made it difficult
to separate 9 cleanly.
The molecular structures of 8 (Supporting Information)
and 9 (Figure 2) were established by X-ray crystallographic
analyses.12 Compounds 8 and 9 are the first examples of the
syntheses and structural analyses of a tetracoordinate 1λ4,2-
thiazetidine and a pentacoordinate 1λ6,2-thiazetidine, respec-
tively. The molecular structure of 9 was found to be distorted
of a tetracoordinate 1,2-thiazetidine6,8 and a pentacoordinate
1,2-thiazetidine3e as an intermediate in the aza-Corey-
Chaykovsky reaction, it is important to elucidate the reactiv-
ity of the highly coordinate 1,2-thiazetidines for the study
of the reaction mechanism of the aza-Corey-Chaykovsky
reaction. However, no compound with such a ring system
containing a pentacoordinate sulfur atom has been reported
in contrast to a great number of reports on â-sultams and a
few reports on dicoordinate 1,2-thiazetidine and tricoordinate
1,2-thiazetidine 1-oxides.9 We report here the synthesis,
crystal structure, and thermolysis of the first example of a
pentacoordinate 1λ6,2-thiazetidine, a novel type of sulfurane
oxide.6c,10 We also discuss its comparison with a tetracoor-
dinate 1λ4,2-thiazetidine. The Martin ligand was used to
stabilize these sulfuranes.7
Sequential treatment of benzyl sulfide 36d with lithium
diisopropylamide (2.2 equiv), (hexafluoroisopropylidene)-
(9) (a) Timberlake, J. W.; Elder, E. S. In ComprehensiVe Heterocyclic
Chemistry; Lwowski, W., Vol. Ed.; Pergamon Press: Oxford, 1984; Vol.
7, Chapter 5.15. (b) Harris, P. A. In ComprehensiVe Heterocyclic Chemistry
II; Padwa, A., Vol. Ed.; Pergamon Press: Oxford, 1996; Vol. 1, Chapter
1.32. (c) Otani, T.; Takayama, J.; Sugihara, Y.; Ishii, A.; Nakayama, J. J.
Am. Chem. Soc. 2003, 125, 8255-8263. (d) Page, M. I. Acc. Chem. Res.
2004, 37, 297-303.
(6) (a) Kawashima, T.; Ohno, F.; Okazaki, R. J. Am. Chem. Soc. 1993,
115, 10434-10435. (b) Kawashima, T.; Ohno, F.; Okazaki, R. Angew.
Chem., Int. Ed. Engl. 1994, 33, 2094-2095. (c) Ohno, F.; Kawashima, T.;
Okazaki, R. J. Am. Chem. Soc. 1996, 118, 697-698. (d) Kawashima, T.;
Ohno, F.; Okazaki, R.; Ikeda, H.; Inagaki, S. J. Am. Chem. Soc. 1996, 118,
12455-12456. (e) Ohno, F.; Kawashima, T.; Okazaki, R. Chem. Commun.
1997, 1671-1672. (f) Ohno, F.; Kawashima, T.; Okazaki, R. Chem.
Commun. 2001, 463-464. (g) Kano, N.; Daicho, Y.; Nakanishi, N.;
Kawashima, T. Org. Lett. 2001, 3, 691-694. (h) Kano, N.; Takahashi, T.;
Kawashima, T. Tetrahedron Lett. 2002, 43, 6775-6778. (i) Kawashima,
T. Coord. Chem. ReV. 2003, 244, 137-147.
(10) (a) Martin, J. C.; Perozzi, E. F. J. Am. Chem. Soc. 1974, 96, 3155-
3168. (b) Perrozi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1974,
96, 6735-6744. (c) Adzima, L. J.; Martin, J. C. J. Am. Chem. Soc. 1977,
99, 1657-1659. (d) Lau, P. H. W.; Martin, J. C. J. Am. Chem. Soc. 1977,
99, 5490-5491. (e) Rongione, J. C.; Martin, J. C. J. Am. Chem. Soc. 1990,
112, 1637-1638.
(7) Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H., III;
Dess, D. B.; Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 1049-
1053.
(11) Perozzi, E. F.; Martin, J. C. J. Am. Chem. Soc. 1972, 94, 5519-
5520.
(8) (a) Li, A.-H.; Zhou, Y.-G.; Dai, L.-X.; Hou, X.-L.; Xia, L.-J.; Lin,
L. Angew. Chem., Int. Ed. Engl. 1997, 36, 1317-1319. (b) Li, A.-H.; Zhou,
Y.-G.; Dai, L.-X.; Hou, X.-L.; Xia, Li-J.; Lin, L. J. Org. Chem. 1998, 63,
4338-4348.
(12) Crystal data of 9: C25H15F12NO2S, FW ) 621.44, colorless crystals,
orthorhombic, space group Pna21, a ) 10.371(4) Å, b ) 16.811(7) Å, c )
14.108(6) Å, V ) 2459.7(18) Å3, Z ) 4, Fcalcd ) 1.678 g cm-3, T ) 110(2)
K, R1(I > 2σ(I)) ) 0.0243 and wR2(all data) ) 0.0572.
4626
Org. Lett., Vol. 8, No. 20, 2006