LETTER
Synthesis of (E)-3-Alkylidene-2(3H)-furanones
1513
(18) (a) Bromofuranone 9 has been previously prepared in three
steps from 2,5-dimethoxy-2,5-dihydrofuran: Bella, M.;
Piancatelli, G.; Squarcia, A. Tetrahedron 2001, 57, 4429;
and references therein. (b) See also: Vaz, B.; Alvarez, R.;
Brückner, R.; de Lera, A. R. Org. Lett. 2005, 7, 545.
(19) Boukouvalas, J.; Lachance, N. Synlett 1998, 31.
(20) For the preparation and addition of metallated silyloxyfurans
to carbonyl compounds, see: (a) Boukouvalas, J.; Cheng,
Y.-X.; Robichaud, J. J. Org. Chem. 1998, 63, 228.
(b) Kanoh, N.; Ishihara, J.; Yamamoto, Y.; Murai, A.
Synthesis 2000, 1878. (c) Xin, Z.; Zheng, G. Z.; Stewart, A.
O. Synlett 2000, 1324. (d) Sibi, M. P.; He, L. Org. Lett.
2004, 6, 1749. (e) Paintner, F. F.; Allmendinger, L.;
Bauschke, G. Synlett 2005, 2735.
In conclusion, the first synthesis of unsubstituted (E)-3-
alkylidene-2(3H)-furanones has been achieved by a high-
ly regio- and stereocontrolled pathway from 3-bromo-2-
triisopropylsilyloxyfuran. The simplicity and inherent
flexibility of this new methodology set the stage for the
synthesis of several natural and unnatural products of
biomedical importance.
Acknowledgment
We are indebted to the Natural Sciences and Engineering Research
Council of Canada (NSERC), Merck Frosst Canada and Eisai Rese-
arch Institute (MA, USA) for financial support.
(21) Data for 10: colorless liquid. 1H NMR (400 MHz, CDCl3):
d = 1.10 (18 H, d, J = 7.2 Hz), 1.29 (3 H, m), 6.27 (1 H, d,
J = 2.4 Hz), 6.80 (1 H, d, J = 2.4 Hz). 13C NMR (100 MHz,
CDCl3): d = 12.3, 17.4, 73.3, 114.1, 131.7, 153.4. HRMS:
m/z calcd: 318.0651 [M+]; found: 318.0656.
References and Notes
(1) (a) Okabe, T.; Yoshida, E.; Chieda, S.; Endo, K.; Kamiya,
S.; Osada, K.; Tanaka, S.; Okura, A.; Suda, H. J. Antibiotics
1994, 47, 289. (b) Tanaka, S.; Okabe, T.; Nakajima, S.;
Yoshida, E.; Suda, H. J. Antibiotics 1994, 47, 294.
(c) Tanaka, S.; Okabe, T.; Nakajima, S.; Yoshida, E.;
Morishima, H. J. Antibiotics 1994, 47, 297.
(2) (a) Chang, R. S.; Ding, L.; Gai-Qing, C.; Qi-Choa, P.; Ze-
Lin, Z.; Smith, K. M. Proc. Soc. Exp. Biol. Med. 1991, 197,
59. (b) Basak, A.; Cooper, S.; Roberge, A. G.; Banik, U. K.;
Chrétien, M.; Seidah, N. G. Biochem. J. 1999, 338, 107.
(c) Basak, A.; Zhong, M.; Munzer, J. S.; Chrétien, M.;
Seidah, N. G. Biochem. J. 2001, 353, 537.
(22) Typical Procedure.
To a solution of bromofuran 10 (0.720 g, 2.26 mmol) in
anhyd THF (30 mL) stirred at –78 °C under nitrogen was
added n-BuLi (2.5 M in hexane, 1.08 mL, 2.49 mmol). After
30 min at –78 °C, a solution of freshly distilled n-hexanal
(0.450 g, 4.53 mmol) in THF (10 mL) was added dropwise
and the mixture was stirred at –78 °C for 2 h. Then, H2O was
added (150 mL) and the solution was extracted twice with
EtOAc. The combined extracts were washed with H2O, aq
sat. NaCl, dried (Na2SO4) and concentrated in vacuo.
Purification by flash chromatography (95:5:1, hexane–
Et2O–Et3N) afforded furylcarbinol 11a (0.708 g, 92%). All
furylcarbinols 11a–j were obtained as oils and characterized
by 1H NMR, 13C NMR, and HRMS; data for representative
compounds are provided below.
(3) (a) Kitagawa, I.; Simanjuntak, P.; Hori, K.; Nagami, N.;
Mahmud, T.; Shibuya, H.; Kobayashi, M. Chem. Pharm.
Bull. 1994, 42, 1050. (b) The alkylidene geometry of
peronemin D1 has not been assigned.
Data for 11a: 1H NMR (300 MHz, CDCl3): d = 0.87–1.80
(32 H, m), 2.17 (1 H, m), 4.60 (1 H, m), 6.27 (1 H, d, J = 1.9
Hz), 6.76 (1 H, d, J = 1.9 Hz). 13C NMR (75 MHz, CDCl3):
d = 12.0, 14.0, 17.7, 22.7, 25.6, 31.7, 37.4, 65.9, 99.7, 109.7,
131.3, 152.3. HRMS: m/z calcd: 297.1886 [M – C3H7]+;
found: 297.1891.
(4) Yadav, R. D.; Kataky, J. C. S.; Mathur, R. K. Indian J.
Chem., Sect B: Org. Chem. Incl. Med. Chem. 1999, 38, 248.
(5) Janeki, T.; Blaszczyk, E.; Studzian, K.; Janecka, A.;
Krajewska, U.; Rózalski, M. J. Med. Chem. 2005, 48, 3516;
and references therein.
(6) Rao, Y. S. Chem. Rev. 1976, 76, 625.
Data for 11e: 1H NMR (400 MHz, CDCl3): d = 1.07 (18 H,
m), 1.27 (3 H, m), 2.05 (1 H, d, J = 3.0 Hz), 5.75 (1 H, d,
J = 3.0 Hz), 6.12 (1 H, d, J = 2.4 Hz), 6.71 (1 H, d, J = 2.4
Hz), 7.30 (5 H, m). 13C NMR (100 MHz, CDCl3): d = 12.5,
17.8, 67.9, 99.9, 110.5, 126.2, 127.3, 128.5, 131.6, 143.8,
153.5. HRMS: m/z calcd: 346.1964 [M+]; found: 346.1961.
Data for 11f: 1H NMR (400 MHz, CDCl3): d = 1.08 (18 H,
m), 1.27 (3 H, m), 2.17 (1 H, d, J = 3.6 Hz), 3.73 (3 H, s),
5.71 (1 H, s), 6.16 (1 H, d, J = 2.2 Hz), 6.71 (1 H, d, J = 2.2
(7) Shanmugasundaram, M.; Raghunathan, R.; Malar, E. J. P.
Heteroat. Chem. 1998, 9, 517.
(8) Rischmann, M.; Mues, R.; Geiger, H.; Laas, H. J.; Eicher, T.
Phytochemistry 1989, 28, 867.
(9) Egorova, A. Y. Russ. Chem. Bull., Int. Ed. 2002, 51, 183.
(10) Khan, R. H.; Rastogi, R. C. J. Chem. Res., Synop. 1991, 260.
(11) (a) Shurov, S. N.; Zhikina, I. A.; Podvintsev, I. B. Russ. J.
Org. Chem. 2002, 38, 862. (b) See also: Shurov, S. N.;
Zhikina, I. A. Russ. J. Gen. Chem. 2000, 70, 1779.
(12) Nair, V.; Bindu, S.; Sreekumar, V.; Rath, N. P. Org. Lett.
2003, 5, 665.
(13) (a) Huang, Y.; Alper, H. J. Org. Chem. 1991, 56, 4534.
(b) See also: El Ali, B.; Alper, H. Synlett 2000, 161.
(14) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini,
P. Tetrahedron 1998, 54, 135.
(15) Lim, S.-G.; Kwon, B.-I.; Choi, M.-G.; Jun, C.-H. Synlett
2005, 1113.
(16) (a) Sigman, M. S.; Kerr, C. E.; Eaton, B. E. J. Am. Chem.
Soc. 1993, 115, 7545. (b) Trifonov, L. S.; Orahovats, A. S.;
Linden, A.; Heimgartner, H. Helv. Chim. Acta 1992, 75,
1872.
Hz), 6.85 (2 H, d, J = 8.4 Hz), 7.31 (2 H, d, J = 8.4 Hz). 13
C
NMR (100 MHz, CDCl3): d = 12.5, 17.8, 55.4, 67.6, 100.1,
110.6, 113.8, 127.5, 131.6, 136.2, 153.3, 158.9. HRMS: m/z
+
calcd: 333.1522 [M – C3H7 ]; found: 333.1518.
Data for 11g: 1H NMR (400 MHz, CDCl3): d = 1.08 (18 H,
m), 1.26 (3 H, m), 2.42 (1 H, br s), 5.81 (1 H, s), 6.04 (1 H,
d, J = 2.2 Hz), 6.71 (1 H, d, J = 2.2 Hz), 7.54 (2 H, d, J = 9.1
Hz), 8.14 (2 H, d, J = 9.1 Hz). 13C NMR (100 MHz, CDCl3):
d = 12.5, 17.8, 67.0, 98.9, 110.0, 123.7, 126.9, 132.1, 147.2,
151.3, 153.8. HRMS: m/z calcd: 392.1893 [MH+]; found:
392.1890.
(23) The E-stereochemistry of compounds 5a–j was determined
by NOESY experiments. The Z-isomers of 5a–c are clearly
distinguished by 1H NMR from their E-isomers by the
upfield shift of the three olefin protons (Dd ca. 0.1–0.3 ppm).
(24) Typical Procedure.
(17) (a) Ochoa de Echagüen, C.; Ortuño, R. M. Tetrahedron
1994, 50, 12457. (b) Grossmann, G.; Poncioni, M.;
Bornand, M.; Jolivet, B.; Neuburger, M.; Séquin, U.
Tetrahedron 2003, 59, 3237. (c) Posner, G. H.; Afarinkia,
K.; Dai, H. Org. Synth. 1995, 73, 231.
To a solution of furylcarbinol 11e (0.190 g, 0.55 mmol) in
anhyd CH2Cl2 (5 mL) stirred at –78 °C under nitrogen was
Synlett 2006, No. 10, 1511–1514 © Thieme Stuttgart · New York