C O M M U N I C A T I O N S
Scheme 2. Synthesis of Glycosylated Hexapeptides 13 and 14a
Figure 2. CD data for hexapeptides 13 and 14 in methanol and water.
Data have been normalized for concentration and number of residues.
i
i
a Conditions: (a) ClCO2 Bu, NMM, -10 °C, 71%; (b) ClCO2 Bu, NMM,
Acknowledgment. We thank Professor Derek Woolfson and
Dr Maxim Ryadnov for advice and access to CD facilities and
AstraZeneca, EPSRC, and the Royal Thai Government for financial
support.
i
-10 °C, 43%; (c) ClCO2 Bu, NMM, -10 °C, 61%; (d) 20% piperidine in
DMF; (e) ClCO2 Bu, NMM, -10 °C, 74% (2 steps); (f) 20% piperidine in
DMF; (g) BzCl, Et3N, 0 °C, 80%; (h) MeOH/NH3, 88%. Nonadjacent NOEs
observed for peptides 13 and 14 in MeOH (see text) are shown with double
headed arrows. NMM ) N-methylmorpholine.
i
Supporting Information Available: Experimental details. This
reactive mixed anhydride was employed. The coupling of 7 and 8
to give 9 was successful, as was the reaction of 9 with each of 7
and 10 to give tripeptides 11 and 12, respectively. A 3 + 3 coupling
of tripeptides 11 and 12 gave the triglycosylated hexapeptide 13,
capped at the N- and C-termini with benzoyl and primary amide,
respectively, and the carbohydrate moieties were deacetylated to
give the target triglycosylated hexapeptide 14. Both 13 and 14 were
purified by reverse phase chromatography, and assignments were
made by NMR (600 MHz) and ESI mass spectrometry.
2D NMR (NOESY and ROESY) analysis of O-protected peptide
13 in CD3OH showed multiple i and i + 2 NOEs between backbone
protons. Specifically CâH(i)-CRH(i + 2) and CâH(i)-NH(i + 2)
NOEs are consistent with the expected 12-helical pattern and
correlated well with Gellman’s sulfonylated pyrrolidine/cyclopentyl
foldamers, the structures of which have been assessed in detail.5d
Peptide 14 shows a very similar set of nonadjacent NOEs in CD3-
OH, and analysis of 14 in H2O also demonstrated a predominant
12-helical conformation.9
These results indicate that glycosylated peptide 14 is a 12-helical
foldamer under aqueous solution and that incorporation of carbo-
hydrate units (protected or unprotected) into this array does not
alter the secondary structure. These findings were corroborated by
circular dichroism (CD) studies (Figure 2). In MeOH, both peptides
13 and 14 showed a characteristic maximum at 204 nm and a
weaker minimum at 230 nm. In water the λmax of peptide 14 is
shifted to 202 nm and λmin to 225 nm.10
In conclusion, we have demonstrated a model system amenable
to the study of carbohydrate-carbohydrate interactions, which
complements multivalency-based approaches. Glycosylation of the
foldamer scaffold does not perturb the helical structure necessary
to maintain the carbohydrate units in close proximity, and the model
triglycosylated peptide 14 also serves as an important control for
future studies. Our next objective is to incorporate carbohydrate
moieties that are associated with an established and biologically
significant carbohydrate-carbohydrate interaction to study this
process in comparative isolation and to detail the nature of the
mechanisms involved.
References
(1) (a) Hakomori, S. Arch. Biochem. Biophys. 2004, 426, 173. (b) Hakomori,
S. Pure Appl. Chem. 1991, 63, 473. (c) Misevic, G. N.; Burger, M. M.
Experientia 1987, 43, 676.
(2) (a) Pincet, F.; Le Bouar, T.; Zhang, Y.; Esnault, J.; Mallet, J.-M.; Perez,
E.; Sinay¨, P. Biophys. J. 2001, 80, 13. (b) Rojo, J.; Morales, J. C.; Penade´s,
S. Top. Curr. Chem. 2002, 218, 45. (c) Bucior, I.; Burger, M. M.
Glycoconjugate J. 2004, 21, 111. (d) Hakomori, S. Glycoconjugate J. 2004,
21, 125.
(3) The Lewisx-Lewisx interaction has provided a focus in this area. (a)
Siuzdak, G.; Ichikawa, Y.; Caulfield, T. J.; Munoz, B.; Wong, C.-H.;
Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 2877. (b) Geyer, A.; Gege,
C.; Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1999, 38, 1466. (c) Geyer,
A.; Gege, C.; Schmidt, R. R. Angew. Chem., Int. Ed. 2000, 39, 3246. (d)
Tromas, C.; Rojo, J.; de la Fuente, J. M.; Barrientos, A. G.; Garc´ıa, R.;
Penade´s, S. Angew. Chem., Int. Ed. 2001, 40, 3052. (e) Nishida, Y.;
Tsurumi, T.; Sasaki, K.; Watanabe, K.; Dohi, H.; Kobayashi, K. Org.
Lett. 2003, 5, 3775. (f) de la Fuente, J. M.; Eaton, P.; Barrientos, A. G.;
Menendez, M.; Penades, S. J. Am. Chem. Soc. 2005, 127, 6192.
(4) (a) Bregant, S.; Zhang, Y. M.; Mallet, J. M.; Brodzki, A.; Sinay¨, P.
Glycoconjugate J. 1999, 16, 757. (b) Esnault, J.; Mallet, J. M.; Zhang, Y.
M.; Sinay¨, P.; Le Bouar, T.; Pincet, F.; Perez, E. Eur. J. Org. Chem.
2001, 2, 253. (c) Gourier, C.; Pincet, F.; Perez, E.; Zhang, Y. M.; Mallet,
J. M.; Sinay¨, P. Glycoconjugate J. 2004, 21, 165. (d) Santacroce, P. V.;
Basu, A. Glycoconjugate J. 2004, 21, 89. (e) Herna´iz, M. J.; de la Fuente,
J. M.; Barrientos, A. G.; Penade´s, S. Angew. Chem., Int. Ed. 2002, 41,
1554. (f) de la Fuente, J. M.; Barrientos, A. G.; Rojas, T. C.; Rojo, J.;
Can˜ada, J.; Ferna´ndez, A.; Penade´s, S. Angew. Chem., Int. Ed. 2001, 113,
2317. (g) Barrientos, A. G.; de la Fuente, J. M.; Rojas, T. C.; Ferna´ndez,
A.; Penade´s, S. Chem.sEur. J. 2003, 9, 1909. (h) Rojo, J.; D´ıaz, V.; de
la Fuente, J. M.; Segura, I.; Barrientos, A. G.; Riese, H. H.; Bernade, A.;
Penade´s, S. Chembiochem 2004, 5, 291.
(5) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b) Appella, D. H.;
Barchi, J. J.; Durell, S. R.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121,
2309. (c) Wang, X. F.; Espinosa, J. F.; Gellman, S. H. J. Am. Chem. Soc.
2000, 122, 4821. (d) Lee, H.-S.; Syud, F. A.; Wang, X.; Gellman, S. H.
J. Am. Chem. Soc. 2001, 123, 7721. (e) Lee, H.-S.; LePlae, P. R.; Porter,
E. A.; Gellman, S. H. J. Org. Chem. 2001, 66, 3597. (f) Cheng, R. P.;
Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101, 3219.
(6) The lactose-lactose interaction has been reported to stabilize a peptide
array but only in hydrophobic solvents (polyfluorinated alcohols) and not
in buffer. Hasegawa, T.; Sasaki, T. Chem. Commun. 2003, 978.
(7) Blake, J.; Wilson, C. D.; Rapoport, H. J. Am. Chem. Soc. 1964, 86, 5293.
(8) Of a range of substrates tested, crotyl-crotyl partners led to less alkene
isomerization and limited the formation of homometathesis products.
(9) In total, three CâH(i)-CRH(i + 2) and four CâH(i)-NH(i + 2) NOEs
were observed in the central portion of 14 in water (see Supporting
Information). All possible CâH(i)-NH(i + 1) NOEs were observed,
consistent with the 12-helix.5d,f
(10) Titration of 14 with CaCl2 (from 0.1 to 100 mM of Ca2+) showed no
effect (by CD) on the secondary structure of peptide 14, and we infer
that no interactions are associated with this simple Gal-based model.
JA0614565
9
J. AM. CHEM. SOC. VOL. 128, NO. 33, 2006 10639