2086
C. Q. Huang et al. /Bioorg. Med. Chem. Lett. 14 (2004) 2083–2086
receptors as previously described19 to access the selec-
tivity of this series of compounds. Compounds 7b and
7n, which exhibited Ki values of 16 and 11 nM, respec-
tively, at the CRF1 receptor, showed no activity (less
than 40% inhibition at a concentration of 10 lM) at the
CRF2a receptor. Thus, compound 7b exhibited good
selectivity profile. In a NovaScreene performed on 66
neurotransmitter receptors (such as D1, GABAa, H1,
and 5HT), brain/gut peptides (such as bradykinin,
CGRP, NPY, and somatostatin), and growth factors
and ion channels (Ca2þ and Naþ), 7b showed no sig-
nificant affinity at 5 lM.
2. Dieterich, K. D.; Lehnert, H.; De Souza, E. B. Exp. Clin.
Endocrinol Diabetes 1997, 105, 65.
3. Heit, S. O.; Owens, M. J.; Plotsky, P.; Nemeroff, C. B.
Neuroscientist 1997, 3, 186.
4. (a) Grigoriadis, D. E.; Haddach, M.; Ling, N.; Saunders,
J. Curr. Med. Chem. 2001, 1, 63; (b) Gilligan, P. J.;
Robertson, D. W.; Zaczek, R. J. Med. Chem. 2000, 43,
1641.
5. Chen, Y. L.; Mansbach, R. S.; Winter, S. M.; Brooks, E.;
Collins, J.; Corman, M. L.; Dunaiskis, A. R.; Faraci,
W. S.; Gallaschun, R. J.; Schmidt, A.; Schulz, D. W.
J. Med. Chem. 1997, 40, 1749.
6. Chen, C.; Dagnino, R., Jr.; De Souza, E. B.; Grigoriadis,
D. E.; Huang, C. Q.; Kim, K. I.; Liu, Z.; Moran, T.;
Webb, T. R.; Whitten, J. P.; Xie, Y. F.; McCarthy, J. R.
J. Med. Chem. 1996, 39, 4358.
7. Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.;
Zaczek, R.; Fitzgerald, L. W.; McElroy, J.; Smith, M. A.;
Shen, H.-S. L.; Saye, J. A.; Christ, D.; Trainor, G.;
Robertson, D. W.; Hartig, P. Bioorg. Med. Chem. 2000, 8,
181.
8. Zobel, A. W.; Nickel, T.; Kunzel, H. E.; Ackl, N.;
Sonntag, A.; Ising, M.; Holsboer, F. J. Psychiatr. Res.
2000, 34, 171.
9. Abreu, M. E.; Rzeszotarski, W.; Kyle, D. J.; Hiner, R. N.;
Elliott, R. L. U.S. Patent 5063245, 1991.
The basic pharmacophore for this series of compounds
is a six-membered heterocyclic ring supporting a lipo-
philic dialkylamino group and a substituted aryl ring,
which needs to be orthogonal to the pyrimidine core.
This pharmacophore seems to be different from other
more popular CRF1 antagonists such as 1–4, in which a
nitrogen served as hydrogen-bond acceptor and a
methyl group are critical for high affinity binding to the
CRF1 receptor, and the lipophilic side chain is relative
small.16 However, for 7,
a
bulky bis(cyclopro-
pane)methyl group on the 2-amino was very important
for high binding affinity, and the 2-nitrogen may serve as
a hydrogen-bonding acceptor. A recent publication
disclosed a series of arylpyrimidinones such as 14, which
also showed SAR different from traditional bicyclic
cores.20 This difference in pharmacophore requirements
may offer the advantage to design potent CRF1 antag-
onists with different structural features.
10. Chen, C.; Dagnino, R., Jr.; Huang, C. Q.; McCarthy, J.
R.; Grigoriadis, D. E. Bioorg. Med. Chem. Lett. 2001, 11,
3165.
11. Gully, D.; Geslin, M.; Serva, L.; Fontaine, E.; Roger, P.;
Lair, C.; Darre, V.; Marcy, C.; Rouby, P.-E.; Simiand, J.;
Guitard, J.; Gout, G.; Steinberg, R.; Rodier, D.; Griebel,
G.; Soubrie, P.; Pascal, M.; Pruss, R.; Scatton, B.;
Maffrand, J.-P.; Le Fur, G. J. Pharmacol. Exp. Ther.
2002, 301, 322.
12. (a) Lin, Y.-I.; Lang, S. A., Jr. J. Org. Chem. 1980, 45,
4857; (b) Bredereck, H.; Effenberger, F.; Botsch, H. Chem.
Ber. 1964, 97, 3397.
13. Tanaka, A.; Motoyama, Y.; Takasugi, H. Chem. Pharm.
Bull. 1994, 42, 1828.
In summary, a series of 2-dialkyl-4-arylpyrimidines
exemplified by 7b and 7n was discovered as potent and
selective CRF1 receptor antagonists. SAR studies sug-
gest that the bis(cyclopropane)methyl group on the
2-amino functionality and the 2,4,6-trisubstituted aryl
or 2,4-disubstituted aryl with a small alkyl group at the
5-position of the pyrimidine core are required for opti-
mum CRF1 receptor binding affinity. From this study a
number of 2-dialkyl-4-arylpyrimidines with high binding
affinity for the CRF1 receptor have been characterized.
In addition, these compounds demonstrated in vitro
inhibition of CRF-stimulated cAMP production in sta-
ble lines transfected with human CRF1 receptor subtype
and ACTH release from primary rat anterior pituitary
cell cultures. The different SAR from the previously
reported series should provide us with a different venue
to search for novel CRF1 receptor antagonists.
14. Levy, O. E.; Semple, J. E.; Lim, M. L.; Reiner, J.; Rote,
W. E.; Dempsey, E.; Richard, B. M.; Zhang, E.; Tulinsky,
A.; Ripka, W. C.; Nutt, R. F. J. Med. Chem. 1996, 39,
4527.
15. Solberg, J.; Undheim, K. Acta Chem. Scand. 1989, 43, 62.
16. Arvanitis, A. G.; Gilligan, P. J.; Chorvat, R. J.; Cheese-
man, R. S.; Christos, T. E.; Bakthavatchalam, R.; Beck, J.
P.; Cocuzza, A. J.; Hobbs, F. W.; Wilde, R. G.; Arnold,
C.; Chidester, D.; Curry, M.; He, L.; Hollis, A.;
Klaczkiewicz, J.; Krentitsky, P. J.; Rescinito, J. P.;
Scholfield, E.; Culp, S.; De Souza, E. B.; Fitzgerald, L.;
Grigoriadis, D.; Tam, S. W.; Wong, Y. N.; Huang, S.-M.;
Shen, H. L. J. Med. Chem. 1999, 42, 805.
17. Battaglia, G.; Webster, E. L.; De Souza, E. B. Synapse
1987, 1, 572.
18. De Souza, E. B. J. Neurosci. 1987, 7, 88.
19. For a CRF2 binding assay see: Grigoriadis, D. E.; Liu,
X. J.; Vaughn, J.; Palmer, S. F.; True, C. D.; Vale, W. W.;
Ling, N.; De Souza, E. B. Mol. Pharmacol. 1996, 50, 679.
20. Hodgetts, K. J.; Yoon, T.; Huang, J.; Gulianello, M.;
Kieltyka, A.; Primus, R.; Brodbeck, R.; De Lombaert, S.;
Doller, D. Bioorg. Med. Chem. Lett. 2003, 13, 2497.
References and notes
1. Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Science 1981, 213,
1394.