Electronic Communication in Diborylated Bithiophene
A R T I C L E S
reported a considerable signal amplification effect.6a We recently
developed a new family of luminescent organoboron polymers,
in which Lewis acidic boron sites are embedded into the main
chain of polythiophenes.7 We observed highly efficient fluo-
rescence quenching upon coordination of very small amounts
of pyridine with an amplification factor of ca. 12 relative to a
molecular model. One of the key questions with regard to the
sensing behavior of such polymers is whether individual
recognition sites along the polymer backbone act independently
or in a cooperative fashion. The latter may provide important
information on the origin of the observed sensor signal
amplification.8
In the present study, bifunctional organoboranes with a
bithiophene linker have been chosen as a model system that
represents a fragment of a conjugated organoboron polymer and
allows us to carefully study the cooperativity between adjacent
Lewis acid sites. Previous electrochemical studies by Kaim and
co-workers on phenylene-bridged diboranes of the type Mes2Bs
(C6H4)nsBMes2 (n ) 1,2; Mes ) 2,4,6-trimethylphenyl)
indicated a considerable degree of electronic communication
between the two boron centers as reflected in two distinct
reduction waves that are separated by 0.69 and 0.25 V,
respectively, in the presence of a phenylene or 4,4′-biphenylene
bridge.9 A significant contribution of the quinoid resonance
structure in the doubly reduced species was postulated. More
recently, Shirota and co-workers have shown that the thiophene
analogue 5,5′-bis(dimesitylboryl)-2,2′-bithiophene also displays
two sequential cathodic waves with a considerable redox
splitting.10 However, interactions between the boron centers in
these and other diboron species5b,11 have in the past been studied
almost exclusively by cyclic voltammetry. Sequential fluoride
binding to arylborane oligomers has been investigated by
Yamaguchi et al. for a system containing four boron centers in
two different environments.5c Noteworthy is also some very
recent work by Li and Fang and co-workers and by Baumgartner
and co-workers, who reported on the use of diborylated aromatic
species as luminescent fluoride sensors while these studies have
been under way.5q,r,12 Li and Fang showed that the diborylated
species Mes2BsThsHCdCHsPhsHCdCHsThsBMes2 acts
as an efficient sensor based on two-photon excited fluorescence.5q
They found that fluoride binds sequentially in THF with binding
constants of log K1 ) 5.51 and log K2 ) 5.08, which indicate
moderate cooperativity (K2/K1 ) 0.37). Baumgartner and co-
workers reported on a highly stable dithienophosphole oxide
system with two Bpin (pin ) pinacolato) substituents that can
be effectively used as a ratiometric probe.5r The diboryldithieno-
phosphole oxide sequentially binds fluoride with log K1 ) 4.02
and log K2 ) 3.79, corresponding to the even smaller cooper-
ativity of K2/K1 ) 0.59.
(3) For reviews, see: (a) Entwistle, C. D.; Marder, T. B. Angew. Chem., Int.
Ed. 2002, 41, 2927-2931. (b) Entwistle, C. D.; Marder, T. B. Chem. Mater.
2004, 16, 4574-4585. (c) Ja¨kle, F. Boron: Organoboranes. In Encyclopedia
of Inorganic Chemistry, 2nd ed.; King, R. B., Ed.; Wiley: Chichester, 2005.
(d) Yamaguchi, S.; Wakamiya, A. Pure Appl. Chem. 2006, 78, 1413-
1424. Recent examples: (e) Lee, B. Y.; Wang, S.; Putzer, M.; Bartholomew,
G. P.; Bu, X.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 3969-3970. (f)
Liu, Z.-Q.; Fang, Q.; Wang, D.; Xue, G.; Yu, W.-T.; Shao, Z.-S.; Jiang,
M.-H. Chem. Commun. 2002, 2900-2901. (g) Liu, Z.-Q.; Fang, Q.; Cao,
D.-X.; Wang, D.; Xu, G.-B. Org. Lett. 2004, 6, 2933-2936. (h) Jia, W.-
L.; Bai, D.-R.; McCormick, T.; Liu, Q.-D.; Motala, M.; Wang, R.-Y.;
Seward, C.; Tao, Y.; Wang, S. Chem.sEur. J. 2004, 10, 994-1006. (i)
Kim, S.; Song, K.-H.; Kang, S. O.; Ko, J. Chem. Commun. 2004, 68-69.
(j) Jia, W. L.; Feng, X. D.; Bai, D. R.; Lu, Z. H.; Wang, S.; Vamvounis,
G. Chem. Mater. 2005, 17, 164-170. (k) Cao, H.; Ma, J.; Zhang, G.; Jiang,
Y. Macromolecules 2005, 38, 1123-1130. (l) Ulrich, G.; Goze, C.;
Guardigli, M.; Roda, A.; Ziessel, R. Angew. Chem., Int. Ed. 2005, 44,
3694-3698. (m) Charlot, M.; Porre`s, L.; Entwistle, C. D.; Beeby, A.;
Marder, T. B.; Blanchard-Desce, M. Phys. Chem. Chem. Phys. 2005, 7,
600-606. (n) Agou, T.; Kobayashi, J.; Kawashima, T. Org. Lett. 2005, 7,
4373-4376. (o) Zhang, H.; Huo, C.; Zhang, J.; Zhang, P.; Tian, W.; Wang,
Y. Chem. Commun. 2006, 281-283. (p) Yuan, Z.; Entwistle, C. D.;
Collings, J. C.; Albesa-Jove´, D.; Batsanov, A. S.; Howard, J. A. K.; Kaiser,
H. M.; Kaufmann, D. E.; Poon, S.-Y.; Wong, W.-Y.; Jardin, C.; Fathallah,
S.; Boucekkine, A.; Halet, J.-F.; Taylor, N. J.; Marder, T. B. Chem.sEur.
J. 2006, 12, 2758-2771. (q) Stahl, R.; Lambert, C.; Kaiser, C.; Wortmann,
R.; Jakober, R. Chem.sEur. J. 2006, 12, 2358-2370. See also citations in
ref 5.
(4) For recent examples of tricoordinate organoboron polymers, see: (a)
Matsumi, N.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 1998, 120, 5112-
5113. (b) Matsumi, N.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 1998, 120,
10776-10777. (c) Matsumoto, F.; Matsumi, N.; Chujo, Y. Polym. Bull.
2001, 46, 257-262. (d) Kobayashi, H.; Sato, N.; Ichikawa, Y.; Miyata,
M.; Chujo, Y.; Matsuyama, T. Synth. Met. 2003, 135-136, 393-394. (e)
Corriu, R. J.-P.; Deforth, T.; Douglas, W. E.; Guerrero, G.; Siebert, W. S.
Chem. Commun. 1998, 963-964. (f) Heilmann, J. B.; Scheibitz, M.; Qin,
Y.; Sundararaman, A.; Ja¨kle, F.; Kretz, T.; Bolte, M.; Lerner, H.-W.;
Holthausen, M. C.; Wagner, M. Angew. Chem., Int. Ed. 2006, 45, 920-
925. See also citations in ref 6.
We describe here the preparation, structural, and photophysi-
cal characterization of highly Lewis acidic bifunctional conju-
gated organoboranes Ar2BsbtsBAr2 (3: Ar ) p-tBuC6H4; 4:
Ar ) C6F5; 5: Ar ) C6F5, Fc; bt ) 2,2′-bithiophene, Fc )
ferrocenyl). We further discuss the electronic communication
between the boron centers and the ensuing strong negative
binding cooperativity, which have been studied by X-ray
(5) (a) Yamaguchi, S.; Shirasaka, T.; Tamao, K. Org. Lett. 2000, 2, 4129-
4132. (b) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2000,
122, 6335-6336. (c) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem.
Soc. 2001, 123, 11372-11375. (d) Yamaguchi, S.; Shirasaka, T.; Akiyama,
S.; Tamao, K. J. Am. Chem. Soc. 2002, 124, 8816-8817. (e) Yamaguchi,
S.; Akiyama, S.; Tamao, K. J. Organomet. Chem. 2002, 652, 3-9. (f)
Cooper, C. R.; Spencer, N.; James, T. D. Chem. Commun. 1998, 1365-
1366. (g) Jia, W.-L.; Song, D.; Wang, S. J. Org. Chem. 2003, 68, 701-
705. (h) Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.;
Yamaguchi, S.; Tamao, K. Angew. Chem., Int. Ed. 2003, 42, 2036-2040.
(i) Sole´, S.; Gabba¨ı, F. P. Chem. Commun. 2004, 1284-1285. (j) Melaimi,
M.; Gabba¨ı, F. P. J. Am. Chem. Soc. 2005, 127, 9680-9681. (k) Zhao, J.;
James, T. D. J. Mater. Chem. 2005, 15, 2896-2901. (l) Zhao, J.; James,
T. D. Chem. Commun. 2005, 1889-1891. (m) Zhu, L.; Zhong, Z.; Anslyn,
E. V. J. Am. Chem. Soc. 2005, 127, 4260-4269. (n) Koskela, S. J. M.;
Fyles, T. M.; James, T. D. Chem. Commun. 2005, 945-947. (o) Kubo, Y.;
Ishida, T.; Kobayashi, A.; James, T. D. J. Mater. Chem. 2005, 15, 2889-
2895. (p) Bresner, C.; Aldridge, S.; Fallis, I. A.; Jones, C.; Ooi, L.-L. Angew.
Chem., Int. Ed. 2005, 44, 3606-3609. (q) Liu, Z.-Q.; Shi, M.; Li, F.-Y.;
Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H. Org. Lett. 2005, 7, 5481-
5484. (r) Neumann, T.; Dienes, Y.; Baumgartner, T. Org. Lett. 2006, 8,
495-497. (s) Liu, X. Y.; Bai, D. R.; Wang, S. Angew. Chem., Int. Ed.
2006, 45, 5475-5478. (t) Hudnall, T. W.; Melaimi, M.; Gabba¨ı, F. P. Org.
Lett. 2006, 8, 2747-2749. (u) Melaimi, M.; Sole´, S.; Chiu, C.-W.; Wang,
H.; Gabba¨ı, F. P. Inorg. Chem. 2006, 45, 8136-8143. (v) Thanthiriwatte,
K. S.; Gwaltney, S. R. J. Phys. Chem. A 2006, 110, 2434-2439.
(6) Polymeric organoboron sensor systems: (a) Miyata, M.; Chujo, Y. Polym.
J. 2002, 34, 967-969. (b) Sundararaman, A.; Victor, M.; Varughese, R.;
Ja¨kle, F. J. Am. Chem. Soc. 2005, 127, 13748-13749. (c) Parab, K.;
Venkatasubbaiah, K.; Ja¨kle, F. J. Am. Chem. Soc. 2006, 128, 12879-12885.
(7) See ref 6b.
(9) (a) Kaim, W.; Schulz, A. Angew. Chem., Int. Ed. Engl. 1984, 23, 615-
616. (b) Schulz, A.; Kaim, W. Chem. Ber. 1989, 122, 1863-1868. (c)
Lichtblau, A.; Kaim, W.; Schulz, A.; Stahl, T. J. Chem. Soc., Perkin Trans.
2 1992, 1497-1501. (d) Lichtblau, A.; Hausen, H.-D.; Schwarz, W.; Kaim,
W. Inorg. Chem. 1993, 32, 73-78. (e) Fiedler, J.; Zalis, S.; Klein, A.;
Hornung, F. M.; Kaim, W. Inorg. Chem. 1996, 35, 3039-3043.
(10) These and related diborylated oligothiophene derivatives have been shown
to act as efficient electron transport materials in organic light emitting
devices (OLEDs); see: (a) Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998,
120, 9714-9715. (b) Noda, T.; Ogawa, H.; Shirota, Y. AdV. Mater. 1999,
11, 283-285. (c) Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara,
T. J. Am. Chem. Soc. 2000, 122, 11021-11022. (d) Okumoto, K.; Ohara,
T.; Noda, T.; Shirota, Y. Synth. Met. 2001, 121, 1655-1656. (e) Kinoshita,
M.; Kita, H.; Shirota, Y. AdV. Funct. Mater. 2002, 12, 780-786. (f) Mazzeo,
M.; Vitale, V.; Sala, F. D.; Anni, M.; Barbarella, G.; Favaretto, L.; Sotgiu,
G.; Cingolani, R.; Gigli, G. AdV. Mater. 2005, 17, 34-39.
(11) (a) Mu¨ller, P.; Huck, S.; Ko¨ppel, H.; Pritzkow, H.; Siebert, W. Z.
Naturforsch., B: Chem. Sci. 1995, 50, 1476-1484. (b) Wang, H.; Gabbai,
F. P. Organometallics 2005, 24, 2898-2902. (c) Venkatasubbaiah, K.;
Zakharov, L. N.; Kassel, W. S.; Rheingold, A. L.; Ja¨kle, F. Angew. Chem.,
Int. Ed. 2005, 44, 5428-5433.
(12) For cooperative effect in the binding of neutral nucleophiles to a bidentate
Lewis acid, see: Chase, P. A.; Henderson, L. D.; Piers, W. E.; Parvez, M.;
Clegg, W.; Elsegood, M. R. J. Organometallics 2006, 25, 349-357.
(8) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. ReV. 2000, 100,
2537-2574.
9
J. AM. CHEM. SOC. VOL. 128, NO. 51, 2006 16555