M. Kamata et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3643–3647
3647
Table 4
at the 6-position improved metabolic stability. We identified a
novel, highly potent, and bioavailable spiro-imide derivative 8c
possessing a thieno[2,3-b]pyridine core, which displayed high
human metabolic stability and favorable rat pharmacokinetic
profiles.
Pharmacokinetic profile of 8ca
Compound
iv (1 mg/kg)
po (3 mg/kg)
b
c
e
f
CLtotal
Vss
(L/kg) (h)
MRTd
Cmax
Tmax
AUCg
(ng h/
mL)
Fh
(%)
(L/h/kg)
(ng/mL) (h)
8c
0.95
1.3
1.3
440
0.5
1400
45
Acknowledgments
a
b
c
n = 3; Crl: CD(SD)(IGS) rats (male, 8W).
Total clearance.
Volume of distribution at steady state.
Mean residence time.
Maximal plasma concentration.
Time of maximal concentration.
Area under the plasma concentration versus time curve.
Bioavailability.
The authors appreciate the helpful discussion with Dr. Yu
Momose, and also thank Mr. Katsuhiko Miwa and Dr. Tooru
Yamano for chiral HPLC separation of compounds.
d
e
f
g
h
Supplementary data
Supplementary data associated with this article can be found, in
The results of the spiro-compounds possessing the 6-methylthi-
eno[2,3-b]pyridine are summarized in Table 3. Lactone 8a, lactam
8b, and imides 8c exhibited 10À9 M order potency and oxazolidin-
edione 8d, imidazolone 8e, and imidazolidinedione 8f also showed
10À8 M order potency; in particular, lactone 8a exhibited the most
potent activity. In addition, all enantiomers of 8a–e predictably
gave less potency as we previously reported.7 The metabolic stabil-
ity of all compounds, except for lactone 8a, significantly improved
relative to the corresponding benzothiophene derivatives 2–6.
Among these compounds, spiro-imide 8c, which showed potent
ACC inhibitory activity exhibited favorable pharmacokinetic pro-
files in rats as shown in Table 4.
References and notes
1. (a) Friedman, J. M. Science 2003, 299, 856; (b) Hill, J. O.; Wyatt, H. R.; Reed, G.
W.; Peters, J. C. Science 2003, 299, 853; (c) Pi-Sunyer, X. Science 2003, 299, 859.
2. (a) Munday, M. R.; Hemingway, C. J. Adv. Enzyme Regul. 1999, 39, 205; (b)
Ruderman, N. B.; Saha, A. K.; Vavvas, D.; Witters, L. A. Am. J. Physiol. 1999, 276,
E1; (c) Ruderman, N. B.; Saha, A. K.; Kraegen, E. W. Endocrinology 2003, 144,
5166.
3. Rudermen, N.; Prentki, M. Nat. Rev. Drug Disc. 2004, 3, 340.
4. (a) Mao, J.; Chirala, S. S.; Wakil, S. J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 7515;
(b) Abu-Elheiga, L.; Almarza-Ortega, D. B.; Baldini, A.; Wakil, S. J. J. Biol. Chem.
1997, 272, 10669.
In conclusion, to improve the metabolic stability of (S)-1, we
modified the spiro-5-membered ring and the benzothiophene ring.
All compounds possessing the imide, oxazolidinedione, imidazo-
lidinedione, imidazolone, or lactam scaffold displayed highly-
potent ACCs inhibitory activities. The SAR study revealed that
installation of an oxo group onto the spiro-lactam ring and replace-
ment of a nitrogen or oxygen atom on the spiro-imide ring
preserved the activity of the molecule. Moreover, bulky lipophilic
groups, such as an isopropyl group at the R4 position, was effective
for maintaining activity, and an R3 (methyl) group on imidazolone
5 was preferable for maintaining metabolic stability in humans.
Although modification of the spiro group led to lipophilicity-re-
lated improvement in metabolic stability, incorporation of a
nitrogen atom in the benzothiophene ring followed by methylation
5. Abu-Elheiga, L.; Matzuk, M. M.; Kordari, P.; Oh, W.; Shaikenov, T.; Gu, Z.; Wakil,
S. J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12011.
6. Abu-Elheiga, L.; Matzuk, M. M.; Abo-Hashema, K. A.; Wakil, S. J. Science 2001,
291, 2613.
7. Yamashita, T.; Kamata, M.; Endo, S.; Yamamoto, M.; Kakegawa, K.; Watanabe,
H.; Miwa, K.; Yamano, T.; Funata, M.; Sakamoto, J.; Tani, A.; Mol, C. D.; Zou, H.;
Dougan, D. R.; Sang, B.; Snell, G.; Fukatsu, K. Bioorg. Med. Chem. Lett. 2011, 21,
6314.
8. The X-ray data for 8b and 8c were deposited to CCDC. 8b: CCDC No. 873680, 8c:
CCDC No. 873679.
9. Tsukamoto, S.; Ichihara, M.; Wanibuchi, F.; Usada, S.; Hidaka, K.; Harada, M.;
Tamura, T. J. Med. Chem. 1993, 36, 2292.
10. Queiroz, M. J.; Calhelha, R. C.; Vale-Silva, L. A.; Pinto, E.; São-José Nascimento,
M. Eur. J. Med. Chem. 2009, 44, 1893.
11. Bernal, C.; Palacin, C.; Boronat, A.; Imperial, S. Anal. Biochem. 2005, 337, 55.
12. Koike, T.; Takai, T.; Hoashi, Y.; Nakayama, M.; Kosugi, Y.; Nakashima, M.;
Yoshikubo, S.; Hirai, K.; Uchikawa, O. J. Med. Chem. 2011, 54, 4207.