Y.-P. Tong et al. / Journal of Molecular Structure 826 (2007) 104–112
111
Acknowledgements
Hepbm·HCl
Hbpbm·HCl·H O
1
2
Emission
1.00
0.75
0.50
0.25
0.00
Excitation
2
This work was supported by the National Natural
Science Foundation of China (Grant No. 20531070) and a
ScientiWc and Technological Project of Guangdong
Province (No. 04205405).
References
[1] H.S. Nalwa, L.S. Rohwer, A.J. Heeger (Eds.), Handbook of Lumines-
cence, Display Materials, and Devices, American ScientiWc Publishers,
Stevenson Ranch, CA, 2003, and references cited therein.
[2] (a) S.-F. Liu, Q. Wu, H.L. Schmider, H. Aziz, N.-X. Hu, Z. PopoviT, S.
Wang, J. Am. Chem. Soc. 122 (2000) 3671;
350
400
450
500
Wavelength / nm
(b) Y. Cui, Q.-D. Liu, D.-R. Bai, W.-L. Jia, Y. Tao, S. Wang, Inorg.
Chem. 44 (2005) 601;
(c) S. Wang, Coord. Chem. Rev. 215 (2001) 79.
Fig. 8. The excitation and emission spectra for 1, 2, Hepbm·HCl and
Hbpbm·HCl·H2O in solid state.
[3] (a) S.-L. Zheng, J.-H. Yang, X.-L. Yu, X.-M. Chen, W.-T. Wong,
Inorg. Chem. 43 (2004) 830;
signiWcantly blue-shifted, respectively, which is in proper
agreement with the ES–GS separations derived from our
TDDFT calculations and experimental observations in
UV spectra. Moreover, such blue-shifts of emission energy
for the free ligands (up to 62 nm for Hepbm·HCl vs.
Hpbm, and 56 nm for Hbpbm·HCl·H2O vs. Hpbm) are
much larger than their corresponding Zn(II) complexes
(only 12 nm for 1 vs. [Zn(pbm)2], and 10 nm for 2 vs.
[Zn(pbm)2]), in agreement with the fact that the excited-
state intramolecular proton transfer (ESIPT) processes
are present in crystalline unalkylated Hpbm [5,9,22], but
absent in crystalline alkylated Hepbm·HCl and
Hbpbm·HCl·H2O.
(b) S.-L. Zheng, J.-P. Zhang, X.-M. Chen, Z.-L. Huang, Z.-Y. Lin,
W.-T. Wong, Eur. J. Chem. 9 (2003) 3888;
(c) S.-L. Zheng, X.-M. Chen, Aust. J. Chem. 57 (2004) 703.
[4] (a) Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, K. Shi-
bata, Jpn. J. Appl. Phys. 35 (1996) L1339;
(b) N. Nakamura, S. Wakabayashi, K. Miyairi, T. Fujii, Chem. Lett.
(1994) 1741.
[5] Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Eur. J. Inorg. Chem. (2005)
3734.
[6] G. Yu, S. Yin, Y. Liu, Z. Shuai, D. Zhu, J. Am. Chem. Soc. 125 (2003)
14816.
[7] T.S. Kim, T. Okubo, T. Mitani, Chem. Mater. 15 (2003) 4949.
[8] L.S. Sapochak, F.E. Benincasa, R.S. SchoWeld, J.L. Baker, K.K.C. Ric-
cio, D. Fogarty, H. Kohlmann, K.F. Ferris, P.E. Burrows, J. Am.
Chem. Soc. 124 (2002) 6119.
[9] Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Inorg. Chem. 44 (2005) 4270.
[10] A.W. Addison, P.J. Burke, J. Heterocyclic Chem. 18 (1981) 803.
[11] D.J. Crane, E. Sinn, B. Tann, Polyhedron 18 (1999) 1527.
[12] R. Blessing, Acta Crystallogr. A 51 (1995) 33.
The emission lifetimes for 1 and 2 in solid at 298K were
measured to be 1.92 and 2.34ns, respectively, which are sim-
ilar to those of other related Zn(II) complexes [3,5].
[13] G.M. Sheldrick, SHELXTL 6.10, Bruker Analytical Instrumentation,
Madison, Wisconsin, USA, 2000.
4. Conclusions
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C.
Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C.
Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Men-
nuci, C. Pomelli, C. Adamo, S. CliVord, J. Ochterski, G.A. Petersson,
P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Oritz, B.B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Mar-
tin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W.
Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople,
GAUSSIAN 98, Revision A9; Gaussian, Inc., Pittsburgh, PA, 1998.
[15] G. Schaftenaar, Molden, Version 3.5, CAOS/CAMM Center Nijme-
gen, Toernooiveld, Nijmegen, The Netherlands, 1999.
[16] (a) N.J. Turro, K.-C. Liu, M.-F. Show, P. Lee, Photochem. Photobiol.
27 (1978) 523;
Two new neutral Zn(II) complexes with dimeric struc-
tures have been synthesized based on the alkylation modiW-
cation of a phenolic N,O-donor derivative at the imidazole
group of Hpbm, which twists the ligand and hence fur-
nishes dimeric Zn(II) compounds emitting blue lumines-
cence. The TDDFT level calculations demonstrate that
their absorption and luminescent properties are all
ligand-centered and ꢆ! ꢆ¤ transitions in nature. Also
interestingly, the n-butylated Zn(II) complex exhibited a
much better thermal stability compared to the ethylated
one, implying the better potential of n-butyl group in the
preparations of luminescent Wlms for OLED through vac-
uum deposition.
(b) S.-L. Zheng, P. Coppens, Cryst. Eng. Comm. 7 (2005) 289;
(c) S.-L. Zheng, P. Coppens, Chem. Eur. J. 11 (2005) 3583;
(d) S.-L. Zheng, P. Coppens, Cryst. Growth Des. 5 (2005) 2050.
[17] (a) P. Cassoux, Science 291 (2001) 263;
5. Supporting information available
(b) H. Tanaka, Y. Okano, H. Kobayashi, W. Suzuki, A. Kobayashi,
Science 291 (2001) 285;
(c) A. Kobayashi, H. Tanaka, H. Kobayashi, J. Mater. Chem. 11
(2001) 2078.
Crystallographic data for the structural analysis have
been deposited with the Cambridge Crystallographic Data
Centre (Deposition Nos. CCDC-269149, 269150, 269153
and 269154 for Hepbm·HCl and Hbpbm·HCl·H2O, 1 and 2,
respectively).
[18] B. Valeur, Molecular Fluorescence: Principles and Applications,
Wiley-VCH, Weinheim, 2002.