M. S. Silva et al. / Tetrahedron Letters 49 (2008) 1927–1930
1929
Table 1 (continued)
Entry
Alkyne 1
Thiol 2
Product 3
Time (h)
2
Ratioa (Z):(E)
Yieldb (%)
p
-ClC6H4S
(
p
-ClC6H4S
50:50
55 (54:46)c
12
1e
p-ClC6H4SH 2b
OH
+
OH
(Z
)-3l
E
)-3l
C6H5S
C5H11
+
13
C6H5SH 2a
C6H5S
C5H11
(Z )-3m
5.5
48:52
52 (100:00)c
C5H11
1f
(
E
)-3m
p
-ClC6H4S
+
14
15
1f
p-ClC6H4SH 2b
C6H5SH 2a
7
1
45:55
80:20
53 (100:00)c
90 (100:00)c
p
-ClC6H4S
C5H11
C5H11
(Z )-3n
(E )-3n
C6H5S
+
C6H5
C6H5S
C6H5
1g
C6H5
(Z )-3o
(E
)-3o
p
-ClC6H4S
+
16
1g
p-ClC6H4SH 2b
1
63:37
95 (100:00)c
p
-ClC6H4S
C6H5
C6H5
(Z )-3p
(E )-3p
a
Determined by 1H NMR of the crude reaction mixture and confirmed after isolation of pure products.
Yields of pure products isolated by column chromatography (hexanes/AcOEt) and identified by mass spectrometry, 1H and 13C NMR.2,3
The regioselectivity of the hydrothiolation (the ratio of anti-Markovnikov: Markovnikov product).
b
c
(1d) with 2a (56% yield, Z:E ratio = 13:87, entry 8). The
scope of our methodology was successfully expanded to
aromatic and aliphatic alkynes (Table 1, entries 13–16).
We observed that for these alkynes the reaction afforded
exclusively the respective anti-Markovnikov adducts
3m–p in good yields (52%–95%). Besides, the possible inter-
ference of the light in the stereoselectivity of the reaction
was also studied. Thus, when 1a and 2a reacted in the dark,
we observed the same results described above for the
preparation of 3a (Table 1, entry 1).
We also observed that, for some alkynes, the hydrothio-
lation with phenylthiol took place even in the absence of a
catalyst. Thus, for example, when a mixture of thiol 2b and
alkynols 1c or 1d was stirred at 60 °C for 3.5 h, the respec-
tive vinyl sulfides 3f and 3h were obtained in good yields
(68% and 55%). For the reaction of propargyl alcohol
(1a), however, the respective vinyl sulfide 3b was obtained
only in 23% yield. The hydrothiolation without Al2O3/
KF did not proceed satisfactorily for the reaction of 1-hep-
tyne (1f) with thiols. Similar result was observed for the
reactions with dodecanethiol (2c).
References and notes
1. For the synthetic utility of vinyl sulfides, see, for example: (a) Aucagne,
V.; Lorin, C.; Tatiboue¨t, A.; Rollin, P. Tetrahedron Lett. 2005, 46,
4349; (b) Muraoka, N.; Mineno, M.; Itami, K.; Yoshida, J.-I. J. Org.
Chem. 2005, 70, 6933; (c) Woodland, C. A.; Crawley, G. C.; Hartley,
R. C. Tetrahedron Lett. 2004, 45, 1227; (d) McReynolds, M. D.;
Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239; (e) Oae,
S. Organic Sulfur Chemistry: Structure and Mechanism; CRC Press:
Boca Raton, FL, 1991; (f) Cremlyn, R. J. An Introduction to
Organosulfur Chemistry; Wiley & Sons: New York, 1996.
2. (a) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205; (b) Cao, C.;
Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614; (c)
Kondoh, A.; Takami, K.; Yorimitsu, H.; Oshima, K. J. Org. Chem.
2005, 70, 6468; (d) Waters, M. S.; Cowen, J. A.; McWilliams, J. C.;
Maligres, P. E.; Askin, D. Tetrahedron Lett. 2000, 41, 141; (e)
Wadsworth, D. H.; Detty, M. R. J. Org. Chem. 1980, 45, 4611.
3. (a) Manarin, F.; Roehrs, J. A.; Prigol, M.; Alves, D.; Nogueira, C. W.;
Zeni, G. Tetrahedron Lett. 2007, 48, 4805; (b) Ananikov, V. P.; Orlov,
N. V.; Beletskaya, I. P. Organometallics 2006, 25, 1970; (c) Sridhar, R.;
Surendra, K.; Krishnaveni, N. S.; Srinivas, B.; Rao, K. R. Synlett 2006,
3495; (d) Schneider, C. C.; Godoi, B.; Prigol, M.; Nogueira, C. W.;
Zeni, G. Organometallics 2007, 26, 4252.
4. For a review on Al2O3/KF in organic synthesis, see: Blass, B. E.
Tetrahedron 2002, 58, 9301.
In conclusion, several vinyl sulfides could be prepared
directly under solvent-free conditions using Al2O3/KF,
which can be re-used up to two times. The method is gen-
eral for the reaction of several alkynes with aromatic and
aliphatic thiols. This method consists in low consumption
of solvent in the overall protocol, short reaction time, mild
reaction conditions, good yields and simplicity, with non-
aqueous workup.
5. (a) Lenardao, E. J.; Mendes, S. R.; Ferreira, P. C.; Perin, G.; Silveira,
˜
C. C.; Jacob, R. G. Tetrahedron Lett. 2006, 47, 7439; (b) Perin, G.;
Jacob, R. G.; Dutra, L. G.; Azambuja, F.; Santos, G. F. F.; Lenardao,
˜
E. J. Tetrahedron Lett. 2006, 47, 935; (c) Perin, G.; Mendes, S. R.;
Silva, M. S.; Lenardao, E. J.; Jacob, R. G.; Santos, P. C. Synth.
˜
Commun. 2006, 36, 2587; (d) Perin, G.; Jacob, R. G.; Azambuja, F.;
Botteselle, G. V.; Siqueira, G. M.; Freitag, R. A.; Lenardao, E. J.
˜
Tetrahedron Lett. 2005, 46, 1679.
6. (a) Lenardao, E. J.; Ferreira, P. C.; Jacob, R. G.; Perin, G.; Leite, F. P.
˜
L. Tetrahedron Lett. 2007, 48, 6763; (b) Lenardao, E. J.; Lara, R. G.;
˜
Silva, M. S.; Jacob, R. G.; Perin, G.; Leite, F. P. L. Tetrahedron Lett.
2007, 48, 7668; (c) Perin, G.; Jacob, R. G.; Botteselle, G. V.; Kublik, E.
Acknowledgements
L.; Lenardao, E. J.; Cella, R.; Santos, P. C. S. J. Brazil Chem. Soc.
˜
2005, 16, 857.
This project is funded by CNPq, CAPES and
FAPERGS. Professor C. C. Silveira (UFSM/Brazil) is
7. Preparation of alumina supported potassium fluoride:9 Alumina (6.0 g of
Al2O3 90, 0.063–0.200 mm, Merck), KFÁ2H2O (5.2 g) and water
(10 mL) were mixed in a 50 mL beaker and the suspension stirred at
1
acknowledged for the H and 13C NMR analysis.