8 For a review on the utility of bidentate P,N-ligands, see: P. J. Guiry and
C. P. Saunders, Adv. Synth. Catal., 2004, 346, 497.
9 For the addition of alkali-phosphorus compounds to nitrostyrene, see:
K. Issleib and P. Von Malotki, J. Prakt. Chem. (Leipzig), 1973, 315,
463.
10 For the asymmetric addition of chiral phosphites to nitroalkenes, see:
D. Enders, L. Tedeschi and J. W. Bats, Angew. Chem., Int. Ed., 2000, 39,
4605.
11 T. Bunlaksananusorn and P. Knochel, J. Org. Chem., 2004, 69, 4595
and references cited therein.
12 (a) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre and
L. Sambri, Angew. Chem., Int. Ed., 2005, 44, 6219; (b) G. Bartoli,
M. Bosco, A. Carlone, A. Cavalli, M. Locatelli, A. Mazzanti, L. Sambri
and P. Melchiorre, Angew. Chem., Int. Ed., 2006, 45, 4966.
13 For studies on the acidity of phosphines, see: (a) A. Streitwieser,
A. E. McKeown, F. Hasanayn and N. R. Davis, Org. Lett., 2005, 7,
1259; (b) W. A. Henderson, Jr. and C. A. Streuli, J. Am. Chem. Soc.,
1960, 82, 5791.
14 For recent studies on organocatalytic addition of pentavalent phos-
phorus compounds to unsaturated substrates, see: (a) D. Pettersen,
M. Marcolini, L. Bernardi, F. Fini, R. P. Herrera, V. Sgarzani and
A. Ricci, J. Org. Chem., 2006, 71, 6269; (b) T. Akiyama, H. Morita,
J. Itoh and K. Fuchibe, Org. Lett., 2005, 7, 2583.
15 (a) J. McNulty and Y. Zhou, Tetrahedron Lett., 2004, 45, 407.
Phosphine–borane deprotection can be easily accomplished under mild
conditions, see: (b) H. Brisset, Y. Gourdel, P. Pellon and M. Le Corre,
Tetrahedron Lett., 1993, 34, 4523.
16 For recent reviews, see: (a) M. S. Taylor and E. N. Jacobsen, Angew.
Chem., Int. Ed., 2006, 45, 1520; (b) S. J. Connon, Chem.–Eur. J., 2006,
12, 5418.
promising organocatalytic AHP strategy to other alkene acceptors
and fully defining its utility as a new synthetic tool for asymmetric
catalysis.
We thank Prof. Pier Giorgio Cozzi and Dr Marzia Mazzacurati
(Bologna University) for fruitful discussions. We are also indebted
to Mr Luca Zuppiroli for his timely assistance in mass spectro-
metry analysis. This research was carried out within the framework
of the National Project ‘‘Stereoselezione in Sintesi Organica’’
supported by MIUR, Rome, and FIRB National Project
‘‘Progettazione, preparazione e valutazione farmacologica di
nuove molecole organiche quali potenziali farmaci innovativi’’.
Notes and references
{ Crystal data for 8. C27H27BNO3P, M = 455.29, monoclinic, a =
˚
9.7738(12), b = 13.1358(16), c = 9.8656(12) A, b = 109.146(2)u,
3
˚
U = 1196.5(3) A , T = 100(2) K, space group P21 (no. 4), Z = 2, m(Mo-
Ka) = 0.144 mm21, 13 673 reflections measured, of which 5605
independent (Rint = 0.0277) and 5533 observed (I . 2s). The final R1
(I . 2s) was 0.0271 and wR2 was 0.0779 (all data). The Flack parameter
was 20.03(4). CCDC 615184. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b613477g
1 (a) Asymmetric Catalysis on Industrial Scale. Challenges, Approaches,
and Solutions, ed. H.-U. Blaser and E. Schmidt, Wiley-VCH, Weinheim,
Germany, 2004; (b) K. V. L. Cre´py and T. Imamoto, Top. Curr. Chem.,
2003, 229, 1.
17 (a) B. Vakulya, S. Varga, A. Csa´mpai and T. Soo´s, Org. Lett., 2005, 7,
1967; (b) S. H. McCooey and S. J. Connon, Angew. Chem., Int. Ed.,
2005, 44, 6367; (c) A. L. Tillman, J. Ye and D. J. Dixon, Chem.
Commun., 2006, 1191.
18 Other nucleophilic phosphorus reagents examined included di-tert-
butylphosphine (0% ee), 1–borane complex (0% ee) and diphenylpho-
sphine oxide (20% ee, 30% conversion, 24 h).
2 (a) K. M. Pietrusiewicz and M. Zablocka, Chem. Rev., 1994, 94, 1375;
(b) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029.
3 For recent examples, see: (a) V. S. Chan, I. C. Stewart, R. G. Bergman
and F. D. Toste, J. Am. Chem. Soc., 2006, 128, 2786; (b) C. Scriban and
D. S. Glueck, J. Am. Chem. Soc., 2006, 128, 2788; (c) B. Join,
D. Mimeau, O. Delacroix and A.-C. Gaumont, Chem. Commun., 2006,
3249.
19 The organocatalytic AHP of aliphatic nitroalkenes afforded racemic
products (aliphatic substituent: isopropyl: 0% ee; n-pentyl: 0% ee). Other
aromatic nitroalkenes tested gave poor enantioselectivity (aromatic
substituent: p-MeO–C6H4: 25% ee; p-Br–C6H4: 22% ee; 2-furanyl: 11%
ee; p-NO2–C6H4: 0% ee; 2,6-Cl–C6H3: 0% ee).
20 The sense of stereochemical induction is in agreement with a previously
reported selectivity model, in which the selective binding of the
nitroolefin with the thiourea framework of the bifunctional catalyst D
through a double-hydrogen bonding mechanism directs the nucleophilic
attack at the Si-face of the electrophile. See ref. 17b.
4 M. Tanaka, Top. Curr. Chem., 2004, 232, 25.
5 P. Braunstein and F. Naud, Angew. Chem., Int. Ed., 2001, 40, 680.
6 (a) A. D. Sadow and A. Togni, J. Am. Chem. Soc., 2005, 127, 17012; (b)
A. D. Sadow, I. Haller, L. Fadini and A. Togni, J. Am. Chem. Soc.,
2004, 126, 14704; (c) for a low-selectivity AHP, see: I. Kovacik,
D. K. Wicht, N. S. Grewal, D. S. Glueck, C. D. Incarvito, I. A. Guzei
and A. L. Rheingold, Organometallics, 2000, 19, 950.
7 (a) N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, New
York, 2001; (b) C. Czekelius and E. M. Carreira, Angew. Chem., Int.
Ed., 2005, 44, 612.
724 | Chem. Commun., 2007, 722–724
This journal is ß The Royal Society of Chemistry 2007