Scheme 1. Synthesis of AB2 Building Block 1
tion-deprotection procedures.14 This technique utilizes a
two-step method that consists of the activation of carboxylic
acids and condensation with an unprotected AB2 building
block having diamine moieties using the activating agent
diphenyl(2,3-dihydro-2-thioxo-3-benzoxazolyl)-phospho-
nate (DBOP)15 and later using a more versatile activating
reagent thionyl chloride.16 Recently, we have also reported
the facile synthesis of Fre´chet-type aryl ether dendrimers
using thionyl chloride by using the same concept.17 However,
these two-step methods are limited to only the convergent
approach because of the difficulties in the complete activation
of end groups at the dendrimer periphery and the quantitative
condensation of the resulting active intermediates with AB2
building blocks without side reactions such as the hydrolysis
of active intermediates, which would result in the formation
of defects, in a divergent approach.
1
Figure 1. Expanded H NMR spectra of reaction solutions.
Several methods such as double-stage growth,8 double-
exponential growth,9 hypermonomers,10 and orthogonal
coupling strategies11 have reported a decrease in the time
required for these lengthy syntheses by reducing the number
of steps.12 These approaches, however, still require multiple
steps to achieve the synthesis of high-generation dendrimers.
A one-pot multiple-addition convergent synthesis of poly-
carbonate dendrimers was recently reported in which the
second-generation dendrimer was prepared by the sequential
activation of an alcohol with 1,1-carbonyl diimidazole and
an AB2 triol.13 We demonstrated the rapid synthesis of a
perfectly branched third-generation (G3) polyamide den-
drimer using a convergent method without repetitive protec-
Scheme 2. Synthesis of G1 Dendrimer
(2) Knapen, J. W. J.; Van der Made, A. W.; de Wilde, J. C.; Van
Leeuwen, A. W.; Wijkens, P.; Grove, D. M.; Van Koten, G. Nature
(London) 1994, 372, 659.
(3) (a) Percec, V.; Cho, C. G.; Pugh, C.; Tomazos, D. Macromolecules
1992, 25, 1164. (b) Percec, V.; Kawasumi, M. Macromolecules 1992, 25,
3843. (c) Percec, V.; Johansson, G.; Heck, J.; Ungar, G.; Batty, S. J. Chem.
Soc., Perkin Trans. 1 1993, 1411. (d) Percec, V.; Chu, P.; Kawasumi, M.
Macromolecules 1994, 27, 4441. (e) Ponomarenko, S. A.; Eebrov, E. A.;
Bobrovsky, A. Yu.; Boiko, N. I.; Muzafarov, A. M.; Shibaev, V. P. Liq.
Cryst. 1996, 21, 1. (f) Busson, P.; Ihre, H.; Hult, A. J. Am. Chem. Soc.
1998, 120, 9070.
(4) (a) Jansen, J. F. G. A.; de Brabander-Van den Berg, E. M. M.; Meijer,
E. W. Science 1994, 266, 1226. (b) Hawker, C. J.; Fre´chet, J. M. J. J. Chem.
Soc., Perkin Trans. 1 1992, 2459.
(5) (a) Haensler, J.; Szoka, F. C. Bioconjugate Chem. 1993, 4, 372. (b)
Redemann, C. T.; Szoka, F. C. Bioconjugate Chem. 1996, 7, 703. (c) Meijer,
E. W.; Paulus, W.; Duncan, R. J. Controlled Release 2000, 65, 133.
(6) (a) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.;
Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117. (b)
Tomalia, D. A.; Naylor, A. N.; Goddard, W. A. Angew. Chem., Int. Ed.
1990, 29, 138.
(7) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638.
(8) Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc.
1991, 113, 4252.
(9) Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; More, J. S. J. Am.
Chem. Soc. 1995, 117, 2159.
(10) Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J. Angew. Chem., Int.
Ed. 1994, 33, 82.
Nevertheless, the divergent approach has several advan-
tages such as the simplicity of the purification process and
accessibility in large-scale industrial synthesis; this is
demonstrated by the fact that most commercially available
dendrimers are currently prepared using the divergent
method. Although several synthetic methods have been
(11) Spindler, R.; Fre´chet, J. M. J. J. Chem. Soc., Perkin Trans. 1 1993,
913.
(14) Okazaki, M.; Washio, I.; Shibasaki, Y.; Ueda, M. J. Am. Chem.
Soc. 2003, 125, 8120.
(15) Ueda, M.; Kameyama, A.; Hashimoto, K. Macromolecules 1988,
21, 19.
(16) (a) Washio, I.; Shibasaki, Y.; Ueda, M. Org. Lett. 2003, 5, 4159.
(b) Washio, I.; Shibasaki, Y.; Ueda, M. Macromolecules 2005, 38, 2237.
(17) Yamazaki, N.; Washio, I.; Shibasaki, Y.; Ueda, M. Org. Lett. 2006,
8, 2321.
(12) For reviews, see, for example: (a) Newcome, G. R.; Moorefield,
C. N.; Vo¨gtle, F. In Dendrimers and Dendrons, Concepts, Syntheses,
Applications; VCH: Weinheim, Germany, 2001. (b) Fre´chet, J. M. J.;
Tomalia, D. A. In Dendrimer and Other Dendritic Polymers; VCH:
Weinheim, Germany, 2002. (c) Grayson, M. S.; Fre´chet, J. M. J. Chem.
ReV. 2001, 101, 3819.
(13) Rannard, S. P.; Davis, N. J. J. Am. Chem. Soc. 2000, 122, 11729.
1364
Org. Lett., Vol. 9, No. 7, 2007