Journal of the American Chemical Society
Page 4 of 5
5845.
21.8 kcal/mol using acetic acid as a general acid model (Figures 3B
and S36A). Those reaction mechanisms that are not initiated by the
deprotonation of C7-OH have been ruled out based on calculations,
due to either the high-energy barrier or unstable intermediates (Fig-
ures S36 and S37).
(2) (a) Thomas, C. M.; Hothersall, J.; Willis, C. L.; Simpson, T. J. Nat. Rev.
Micro. 2010, 8, 281. (b) Okouneva, T.; Azarenko, O.; Wilson, L.; Littlefield,
B. A.; Jordan, M. A. Mol. Cancer Ther. 2008, 7, 2003. (c) Finkelstein, E.;
Amichai, B.; Grunwald, M. H. Int. J. Antimicrob. Agents 1996, 6, 189.
(3) Sheppard, T. D. J. Chem. Res. 2011, 35, 377.
1
2
3
4
5
6
7
8
Proteins belonging to the DUF3237 superfamily are widely dis-
tributed in Nature, from bacteria to fungi, with many PhnH homo-
logs embedded in potential natural product gene clusters (Figure
S41). PhnH displays high sequence identity and homology to many
members of the family (Figure S39). We generated a homology
model of PhnH by using the I-TASSER server.25 The model shows
an overall -barrel fold, typically adopted by the other members in
the DUF3237 superfamily (Figure 3C). The model reveals a puta-
tive active site: a hydrophobic pocket with a Glu (E104) residue po-
sitioned at the bottom of the solvent-exposed cavity. Mutation at
this residue compromised the enzymatic activity by ~60%. This in-
dicates E104, which may be deprotonated under assay conditions, is
not a general acid, but may be involved in proper positioning a water
molecule (probably in its hydronium form) as a specific acid during
the protonation reaction step. We also performed single-residue
mutations at other conserved acidic positions based on sequence
alignment. Different mutations led to varying degrees of attenuation
in enzyme activity and expression levels, although no single muta-
tion completely abolished PhnH activity (Table S8). Lastly, we syn-
thesized 2-allyl resorcinol as a simplified substrate to test the prom-
iscuity of PhnH. No rate acceleration of the hydroalkoxylation ad-
duct was observed, which may be due to lack of recognition of the
much smaller substrate by the enzyme, and/or due to the signifi-
cantly higher pKa of the phenol group.
(4) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem. Int. Ed. 2004,
43, 3368.
(5) Smith, M. B.; March, J. In March's Advanced Organic Chemistry; John
Wiley & Sons, Inc.: 2006, p1251.
(6) (a) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.;
Hartwig, J. F. Org. Lett. 2006, 8, 4179. (b) Jeong, Y.; Kim, D.-Y.; Choi, Y.;
Ryu, J.-S. Org. Biomol. Chem. 2011, 9, 374.
(7) For select examples of transition metal-catalyzed hydroalkoxylation, see:
(a) Hay, M. B.; Hardin, A. R.; Wolfe, J. P. J. Org. Chem. 2005, 70, 3099. (b)
Zhang, Z.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2007, 46, 283. (c)
Murayama, H.; Nagao, K.; Ohmiya, H.; Sawamura, M. Org. Lett. 2015, 17,
2039. (d) Schlüter, J.; Blazejak, M.; Boeck, F.; Hintermann, L. Angew. Chem.
Int. Ed. 2015, 54, 4014. (e) Liu, Z.; Breit, B. Angew. Chem. Int. Ed. 2016, 55,
8440. (f) Li, J.; Lin, L.; Hu, B.; Zhou, P.; Huang, T.; Liu, X.; Feng, X. Angew.
Chem. Int. Ed. 2017, 56, 885. (g) Hack, D.; Chauhan, P.; Deckers, K.;
Mizutani, Y.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2266.
(8) (a) Wise, M. L.; Savage, T. J.; Katahira, E.; Croteau R. J. Biol.
Chem. 1998, 273, 14891. (b) Piechulla, B.; Bartelt, R,; Brosemann, A.;
Effmert, U.; Bouwmeester, H.; Hippauf, F.; Brandt, W. Plant Physiol. 2016,
172, 2120. (c) Wise, M. L.; Urbansky, M.; Helms, G. L.; Coates, R.
M.; Croteau, R. J. Am. Chem. Soc. 2002, 124, 8546.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Kalaitzis, J. A.; Hamano, Y.; Nilsen, G.; Moore, B. S. Org. Lett. 2003, 5,
4449.
(10) Brooks, J. S.; Morrison, G. A. J. Chem. Soc., Perkin Trans. 1 1972, 421.
(11) Fun, H.-K.; Chantrapromma, S.; Boonnak, N.; Karalai, C.;
Chantrapromma, K. Acta Crystallogr. Sect. E 2011, 67, o1916.
(12) Gao, S.-S.; Duan, A.; Xu, W.; Yu, P.; Hang, L.; Houk, K. N.; Tang, Y. J.
Am. Chem. Soc. 2016, 138, 4249.
(13) Elsebai, M. F.; Saleem, M.; Tejesvi, M. V.; Kajula, M.; Mattila, S.;
Mehiri, M.; Turpeinen, A.; Pirttila, A. M. Nat. Prod. Rep. 2014, 31, 628.
(14) McIntosh, J. A.; Donia, M. S.; Nair, S. K.; Schmidt, E. W. J. Am. Chem.
Soc. 2011, 133, 13698.
(15) Hao, Y.; Pierce, E.; Roe, D.; Morita, M.; McIntosh, J. A.; Agarwal, V.;
Cheatham, T. E.; Schmidt, E. W.; Nair, S. K. Proc. Natl. Acad. Sci. 2016, 113,
14037.
(16) Rudolf, J. D.; Poulter, C. D. ACS Chem. Biol. 2013, 8, 2707.
(17) Ayer, W. A.; Hoyano, Y.; Pedras, M. S.; Clardy, J.; Arnold, E. Can. J.
Chem. 1987, 65, 748.
In conclusion, PhnH is the first functionally characterized
member of protein in the DUF3237 family. The discovery of PhnH
complements other enzymatic strategies to synthesize cyclic ethers
in natural products.1a,26 Therefore PhnH provides an enzymatic var-
iant of asymmetric hydroalkoxylation of olefins, an important trans-
formation in synthetic chemistry.
ASSOCIATED CONTENT
Supporting Information
Experimental details, spectroscopic and computational data. This mate-
(18) Ishikawa, Y.; Morimoto, K.; Iseki, S. J. Am. Oil Chem. Soc. 1991, 68,
666.
(19) Paul, I. C.; Sim, G. A. J. Chem. Soc. 1965, 1097.
AUTHOR INFORMATION
(20) Neill, K. G.; Raistrick, H. Biochem. J. 1957, 65, 166.
(21) (a) Tansakul, C.; Rukachaisirikul, V.; Maha, A.; Kongprapan, T.;
Phongpaichit, S.; Hutadilok-Towatana, N.; Borwornwiriyapan, K.;
Sakayaroj, J. Nat. Prod. Res. 2014, 28, 1718. (b) Quick, A.; Thomas, R.;
Williams, D. J. J. Chem. Soc., Chem. Commun. 1980, 1051.
(22) Brooks, J. S.; Morrison, G. A. Tetrahedron Lett. 1970, 11, 963.
(23) Barton, D. H. R.; de Mayo, P.; Morrison, G. A.; Raistrick, H.
Tetrahedron 1959, 6, 48.
(24) ACE/JChem, ACE and JChem acidity and basicity calculator. 2016,
(25) Zhang, Y. BMC Bioinformatics 2008, 9, 40.
(26) Tang, M. C.; Zou, Y.; Watanabe, K.; Walsh, C. T.; Tang. Y. Chem.
Rev. 2017, ASAP. doi: 10.1021/acs.chemrev.6b00478.
Corresponding Author
ACKNOWLEDGMENTS
This work was supported by the NIH 1DP1GM106413 and
1R35GM118056 to YT; and the NSF CHE-1361104 to K.N.H.; and the
Chemistry–Biology Interface training program (J.S.B., NRSA
5T32GM008496-20). M.G.-B. thanks the Ramón Areces Foundation
for a Postdoctoral Fellowship.
REFERENCES
(1) (a) Hemmerling, F.; Hahn, F. Beilstein J. Org. Chem. 2016, 12, 1512.
(b) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57,
ACS Paragon Plus Environment