1348
E. HAGINOYA et al.
synthesis of peptide thioester carrying N-linked core
pentasaccharide through modified Fmoc thioester prep-
aration: synthesis of an N-glycosylated Ig domain of
emmprin. Tetrahedron Lett., 44, 2961–2964 (2003).
15) Warren, J. D., Miller, J. S., Keding, S. J., and
Danishefsky, S. J., Toward fully synthetic glycoproteins
by ultimately convergent routes: a solution to a long-
standing problem. J. Am. Chem. Soc., 126, 6576–6578
(2004).
16) Botti, P., Villain, M., Manganiello, S., and Gaertner, H.,
Native chemical ligation through in situ O to S acyl shift.
Org. Lett., 6, 4861–4864 (2004).
17) Macmillan, D., and Bertozzi, C. R., Modular assembly of
glycoproteins: towards the synthesis of GlyCAM-1 by
using expressed protein ligation. Angew. Chem. Int. Ed.,
43, 1355–1359 (2004).
18) Hojo, H., Matsumoto, Y., Nakahara, Y., Ito, E., Suzuki,
Y., Suzuki, M., Suzuki, A., and Nakahara, Y., Chemical
synthesis of 23-kDa glycoprotein by repetitive segment
condensation: a synthesis of MUC2 basal motif carrying
multiple O-GalNAc moieties. J. Am. Chem. Soc., 127,
13720–13725 (2005).
19) Marcaurelle, L. A., Mizoue, L. S., Wilken, J., Oldham,
L., Kent, S. B. H., Handel, T. M., and Bertozzi, C. R.,
Chemical synthesis of lymphotactin: a glycosylated
chemokine with a C-terminal mucin-like domain. Chem.
Eur. J., 7, 1129–1132 (2001).
20) Lavielle, S., Ling, N. C., and Guillemin, R. C., Solid-
phase synthesis of two glycopeptides containing the
amino acid sequence 5 to 9 of somatostatin. Carbohydr.
Res., 89, 221–228 (1981).
21) Teshima, T., Urabe, T., Yamamoto, T., Isaka, S.,
Kumagaye, K., Nakajima, K., and Shiba, T., Solid-phase
synthesis of the antibacterial glycopeptide, formaecin,
using Boc-strategy. In ‘‘Peptide Science 1998,’’ ed.
Kondo, M., Protein Research Foundation, Osaka,
pp. 157–160 (1999).
scientific research (no. 16580093) from the Ministry of
Education, Culture, Sport, Sciences and Technology of
Japan. We thank Tokai University for grant-aid for high-
technology research. We also thank the Japan Society
for the promotion of Science for grant-aid for creative
scientific research (no. 17GS0420).
References
1) Hojo, H., and Aimoto, S., Polypeptide synthesis using
the S-alkyl thioester of a partially protected peptide
segment. Synthesis of the DNA-binding domain of c-
Myb protein (142-193)-NH2. Bull. Chem. Soc. Jpn., 64,
111–117 (1991).
2) Aimoto, S., Polypeptide synthesis by the thioester
method. Biopolymers (Peptide Science), 51, 247–265
(1999).
3) Dawson, P. E., Muir, T. W., Clark-Lewis, I., and Kent, S.
B. H., Synthesis of proteins by native chemical ligation.
Science, 266, 776–779 (1994).
4) Dawson, P. E., and Kent, S. B. H., Synthesis of native
proteins by chemical ligation. Ann. Rev. Biochem., 69,
923–960 (2000).
5) Futaki, S., Sogawa, K., Maruyama, J., Asahara, T.,
Niwa, M., and Hojo, H., Preparation of peptide thioesters
using Fmoc-solid-phase peptide synthesis and its appli-
cation to the construction of a template-assembled
synthetic protein (TASP). Tetrahedron Lett., 38, 6237–
6240 (1997).
6) Li, X., Kawakami, T., and Aimoto, S., Direct preparation
of peptide thioesters using an Fmoc solid-phase method.
Tetrahedron Lett., 39, 8669–8672 (1998).
7) Shin, Y., Winans, K. A., Backes, B. J., Kent, S. B. H.,
Ellman, J. A., and Bertozzi, C. R., Fmoc-based synthesis
of peptide-ꢂthioesters: application to the total chemical
synthesis of a glycoprotein by native chemical ligation.
J. Am. Chem. Soc., 121, 11684–11689 (1999).
8) Alsina, J., Yokumu, T. S., Albericio, F., and Barany, G.,
Backbone amide linker (BAL) strategy for Nꢂ-9-fluo-
renylmethoxycarbonyl (Fmoc) solid-phase synthesis of
unprotected peptide p-nitroanilides and thioesters. J.
Org. Chem., 64, 8761–8769 (1999).
22) Mizuno, M., Haneda, K., Iguchi, R., Muramoto, I.,
Kawakami, T., Aimoto, S., Yamamoto, K., and Inazu,
T., Synthesis of a glycopeptide containing oligosaccha-
rides: chemoenzymatic synthesis of eel calcitonin ana-
logues having natural N-linked oligosaccharides. J. Am.
Chem. Soc., 121, 284–290 (1999).
9) Ingenito, R., Bianchi, E., Fattori, D., and Pessi, A., Solid
phase synthesis of peptide C-terminal thioesters by
Fmoc/t-Bu chemistry. J. Am. Chem. Soc., 121, 11369–
11374 (1999).
10) Clippingdale, A. B., Barrow, C. J., and Wade, J. D.,
Peptide thioester preparation by Fmoc solid phase
peptide synthesis for use in native chemical ligation. J.
Peptide Sci., 6, 225–234 (2000).
11) Swinnen, D., and Hilvert, D., Facile Fmoc-compatible
solid-phase synthesis of peptide C-terminal thioesters.
Org. Lett., 2, 2439–2442 (2000).
12) Mezo, A. R., Cheng, R. P., and Imperiali, B., Oligome-
rization of uniquely folded mini-protein motifs: develop-
ment of a homotrimeric ꢁꢁꢂ peptide. J. Am. Chem. Soc.,
123, 3885–3891 (2001).
23) Hojo, H., Watabe, J., Nakahara, Y., Nakahara, Y., Ito,
Y., Nabeshima, K., and Toole, B. P., Synthesis of
the extracellular Ig domain I of emmprin carrying a
chitobiose unit. Tetrahedron Lett., 42, 3001–3004
(2001).
24) Ellis, S. M., Nabeshima, K., and Biswas, C., Monoclonal
antibody preparation and purification of a tumor cell
collagenase-stimulatory factor. Cancer Res., 49, 3385–
3391 (1989).
25) Nabeshima, K., Kataoka, H., Koono, M., and Toole, B.
P., Activation and induction of collagenases. In ‘‘Colla-
genases,’’ ed. Hoeffler, W., R. G. Landes Company,
Texas, pp. 91–113 (1999).
26) Mort, A. J., and Lamport, D. T., Anhydrous hydrogen
fluoride deglycosylates glycoproteins. Anal. Biochem.,
82, 289–309 (1977).
13) Brask, J., Albericio, F., and Jensen, K. J., Fmoc solid-
phase synthesis of peptide thioesters by masking as
trithioortho esters. Org. Lett., 5, 2951–2953 (2003).
14) Hojo, H., Haginoya, E., Matsumoto, Y., Nakahara, Y.,
Nabeshima, K., Toole, B. P., and Watanabe, Y., The first
27) Kerekgyarto, J., Agoston, K., Batta, G., Kamerling, J. P.,
and Vliegenthart, J. F. G., Synthesis of fully and partially
benzylated glycosyl azides via thioalkyl glycosides as
precursors for the preparation of N-glycopeptides.