10.1002/anie.201703591
Angewandte Chemie International Edition
COMMUNICATION
[2]
For reviews, see: a) D. W. Stephan, S. Greenberg, T. W. Graham, P.
Chase, J. J. Hastie, S. J. Geier, J. M. Farrell, C. C. Brown, Z. M. Heiden,
G. C. Welch, M. Ullrich, Inorg. Chem. 2011, 50, 12338–12348; b) D. W.
Stephan, Org. Biomol. Chem. 2012, 10, 5740–5746; c) T. Soós, Pure
Appl. Chem. 2011, 83, 667–675; d) J. Paradies, Synlett, 2013, 777-780;
e) L. J. Hounjet, D. W. Stephan, Org. Process Res. Dev. 2014, 18,
385–391; f) L. Shi, Y.-G. Zhou, ChemCatChem 2015, 7, 54–56.
chlorine (14, 15), bromine (16), cyclopropyl (18), olefin (19, 21,
22) and acetylene (20). The reduction of imines of sterically
hindered amines such as tert-butylamine and diisopropyl-amine
are slower; therefore these products (24, 28) can be isolated
with only moderate yields. As a further proof for versatility, we
found that chiral secondary amines can be used in this protocol,
as only negligible racemization was observed in 1-phenylethyl
products 29 and 30. It was expected and then observed that the
steric demand of the reducing agent affects the outcomes of the
reductions. Thus, cinnamaldehyde can be chemoselectively
reduced to allylamine derivative 22 without the saturation of the
olefinic group. Furthermore, 4-tBu-cyclohexanone was trans-
formed selectively to the corresponding cis-amino derivative 32,
so the transiently formed bulky borohydride attacks the corre-
sponding imine equatorially. We also assumed that the steric
contribution of the reducing agent could be used to secure dia-
stereoselectivity in chirality transfer reactions. Thus, the reduc-
tive amination of methyl-ethylketone with enantiopure 1-
phenylethylamines was probed. Despite the moderate diastere-
omeric ratio, 2:1, it is a promising result for substrates having
such a small steric difference (33, 34). Finally, the double meth-
ylation of primary amine was accomplished using formaldehyde
(35). Notably, the water tolerance of the developed FLP allowed
using 37% aqueous solution of formaldehyde. Thus, even aque-
ous two-phase (water-toluene) reaction can be performed with
high conversion.
[3]
[4]
For mechanism, see: a) T. A. Rokob, A. Hamza, A. Stirling, T. Soós, I.
Pápai, Angew. Chem. Int. Ed. 2008, 47, 2435–2438; b) T. A. Rokob, A.
Hamza, I. Pápai, J. Am. Chem. Soc. 2009, 131, 10701–10710; c) S.
Grimme, H. Kruse, L. Goerigk, G. Erker, Angew. Chem. Int. Ed. 2010,
49, 1402–1405; d) T. A. Rokob, I. Bakó, A. Stirling, A. Hamza, I. Pápai,
J. Am. Chem. Soc. 2013, 135, 4425–443.
a) M. Lindqvist, N. Sernala, V. Sumerin, K. Chernichenko, M. Leskelä;
T. Repo, Dalton Trans. 2012, 41, 4310–4312; b) L. E. Longobardi, C.
Tang, D. W. Stephan, Dalton Trans. 2014, 43, 15723–15726; b) D. J.
Scott, M. J. Fuchter, A. E. Ashley, J. Am. Chem. Soc. 2014, 136,
15813–15816; c) T. Mahdi, D. W. Stephan, J. Am. Chem. Soc. 2014,
136, 15809–15812; d) Á. Gyömöre, M. Bakos, T. Földes, I. Pápai, A.
Domján, T. Soós, ACS Catal. 2015, 5, 5366–5372; e) D. J. Scott, T. R.
Simmons, E. J. Lawrence, G. G. Wildgoose, M. J. Fuchter, A. E. Ashley,
ACS Catal. 2015, 5, 5540–5544; f) M. Bakos, Á. Gyömöre, A. Domján,
T. Soós, Angew. Chem. Int. Ed. 2017, 56, 5217..
[5]
[6]
D. J. Scott, N. A. Phillips, J. S. Sapsford, A. C. Deacy, M. J. Fuchter, A.
E. Ashley, Angew. Chem. Int. Ed. 2016, 55, 14738–14742.
Auto-tandem condensation-reduction FLP reactions using silane reduc-
ing agents a) M.-C. Fu, R. Shang, W.-M. Cheng, Y. Fu, Angew. Chem.
Int. Ed. 2015, 54, 9042–9046; b) V. Fasano, J. E. Radcliffe, M. J. Ingle-
son, ACS Catal. 2016, 6, 1793−1798; c) M. R. Tiddens, R. J. M. K.
Gebbink, M. Otte, Org. Lett. 2016, 18, 3714–3717; d) V. Fasano, M. J.
Ingleson, Chem. Eur. J. 2017, 23, 2217–2224.
In conclusion, as the systematic steric tunings revealed, the
modulation of back-strain is an important design element to
tackle one of key constrains of B/N centered FLP hydrogenation,
the water inhibition. The enhanced back-strain of LA upon com-
plexation makes water binding increasingly reversible. In this
way, we can maintain the preferential hydrogen activation ability
while suppressing the interference of the water with FLP. The
utility of this structurally fine-tuned FLP catalyst was demon-
strated in reductive amination of carbonyls. This novel metal-free
method displays a notable broad chemoselectivity and generality.
[7]
For reviews, see: a) J. Martens, Houben-Weyl Methods of Organic
Chemistry, 4th Ed.,; (Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E.
Schaumann), Thieme, Stuttgart, 1995, Vol. E21d, 4199–4238; b) E. W.
Baxter, A. B. Reitz, Organic Reactions, Vol. 59; Wiley: New York, 2002,
1; c) S. Gomez, J. A. Peters, T. Maschmeyer, Adv. Synth. Catal. 2002,
344, 1037–1057; d) Chiral Amine Synthesis, Ed. T. C. Nugent, Wiley-
VCH, 2010. For selected catalytic examples, see: e) V. I. Tararov, R.
Kadyrov, T. H. Riermeier, C. Fischer, A. Börner, Adv. Synth. Catal.
2004, 346, 561-565; f) D. Menche, J. Hassfeld, J. Li, G. Menche, A. Rit-
ter, S. Rudolph, Org. Lett. 2006, 8, 741–744; g) R. I. Storer, D. E. Car-
rera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84–86;
h) A. Pagnoux-Ozherelyeva, N. Pannetier, M. D. Mbaye, S. Gaillard, J.
L. Renaud, Angew. Chem. Int. Ed. 2012, 51, 4976–4980; i) D. Chusov,
B. List, Angew. Chem. Int. Ed. 2014, 53, 5199–5201; j) S. Zhou, S.
Fleischer, H. Jiao, K. Junge, M. Beller, Adv. Synth. Catal. 2014, 356,
3451–3455; k) T. Huber, L. Schneider, A. Präg, S. Gerhardt, O. Einsle,
M. Müller, ChemCatChem 2014, 6, 2248–2252; l) T. Stemmler, A.-E.
Surkus, M.-M. Pohl, K. Junge, M. Beller, ChemSusChem 2014, 7,
3012–3016; m) S. Pisiewicz, T. Stemmler, A.-E. Surkus, K. Junge, M.
Beller, ChemCatChem 2015, 7, 62–64; m) Y. Ogiwara, T. Uchiyama, N.
Sakai, Angew. Chem. Int. Ed. 2016, 55, 1864–1867; n) H. Huang, X.
Liu, L. Zhou, M. Chang, X. Zhang, Angew. Chem. Int. Ed. 2016, 55,
5309–5312; o) P. Yang, L. H. Lim, P. Chuanprasit, H. Hirao, J. Zhou,
Angew. Chem. Int. Ed. 2016, 55, 12083–12087; p) A. Pushpanath, E.
Siirola, A. Bornadel, D. Woodlock, U. Schell, ACS Catal. 2017, 7,
3204–3209; q) Q. Zhang , S.-S. Li , M.-M. Zhu, Y.-M. Liu, H.-Y. He, Y.
Cao, Green Chem. 2016, 18, 2507–2513; r) O. I. Afanasyev, A. A. Tsy-
gankov, D. L. Usanov, D. S. Perekalin, N. V. Shvydkiy, V. I. Maleev, A.
R. Kudinov, D. Chusov, ACS Catal. 2016, 6, 2043–2046; s) D. Wetzl, M.
Gand, A. Ross, H. Müller, P. Matzel, S. P. Hanlon, M. Müller, B. Wirz,
M. Höhne, H. Iding, ChemCatChem 2016, 8, 2023–2026; t) B. Song,
C.-B. Yu, Y. Ji, M.-W. Chen, Y.-G. Zhou, Chem. Commun. 2017, 53,
1704-1707; Stoichiometric borane methods: u) C. F. Lane, Synthesis
1975,135–146; v) K. Gilmore, S. Vukelić, D. T. McQuade, B. Koksch, P.
H. Seeberger, Org. Process Res. Dev. 2014, 18, 1771–1776;
Acknowledgements
The authors acknowledge financial support from National Re-
search, Development and Innovation Office (grants K-116150
and K-115660). The authors thank László Gulyás for HRMS
measurements and Tamás Pajkossy for CV measurements.
Keywords: frustrated Lewis pairs, water tolerant, strain, reduc-
tive amination, dynamic NMR
[1]
Pioneering work: a) G. C. Welch, R. R. San Juan, J. D. Masuda, D. W.
Stephan, Science 2006, 314,1124–1126; Reviews on FLP chemistry: b)
D. W. Stephan, Science 2016, 354, 1248–1256; c) D. W. Stephan, G.
Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441; d) D. W. Stephan,
Acc. Chem. Res. 2015, 48, 306–316; e) D. W. Stephan, J. Am. Chem.
Soc. 2015, 137, 10018–10032; f) S. R. Flynn, D. F. Wass, ACS Catal.
2013, 3, 2574–2581; g) “Frustrated Lewis Pairs I-II”: Topics in Current
Chemistry (Eds.: G. Erker, D. W. Stephan), Springer, Heidelberg, 2013,
191–217; h) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49,
46–76.
This article is protected by copyright. All rights reserved.