Angewandte
Chemie
Chem. 2005, 452 – 456; h) A. Sharifi, F. Mohsenzadeh, M. M.
Mojtahedi, M. R. Saidi, S. Balalaie, Synth. Commun. 2001, 31,
431 – 434; i) S. Caddick, D. B. Judd, A. K. de K. Lewis, M. T.
Reich, M. R. V. Williams, Tetrahedron 2003, 59, 5417 – 5423;
j) G. Jayachitra, N. Yasmeen, K. S. Rao, S. L. Ralte, R. Sriniva-
san, A. K. Singh, Synth. Commun. 2003, 33, 3461 – 3466; k) F. Xi,
F. Kamal, M. A. Schenerman, Tetrahedron Lett. 2002, 43, 1395 –
1396; l) Z. P. Demko, K. B. Sharpless, Angew. Chem. Int. Ed.
2002, 41, 2113 – 2116; m) B. Davis, T. W. Brandstetter, C. Smith,
L. Hackett, B. G. Winchester, G. W. J. Fleet, Tetrahedron Lett.
1995, 36, 7507 – 7510.
require handling HCN or elevated pressures and temper-
atures.[19] Moreover, once the reaction has reached comple-
tion, simple removal of solvent followed by chromatography
on silica gel furnishes the desired nitrile product.
[2] a) E. S. Brown, E. A. Rick, Chem. Commun. 1969, 112; b) B. W.
Taylor, H. E. Swift, J. Catal. 1972, 26, 254 – 260; c) J. Podlech,
Science of Synthesis, Vol. 19, Georg Thieme, Stuttgart, 2004,
pp. 333 – 344.
[3] a) J.-E. Bꢀckvall, O. S. Andell, J. Chem. Soc. Chem. Commun.
1984, 260 – 261; b) C. A. Tolman, W. C. Seidel, J. D. Druliner,
P. J. Domaille, Organometallics 1984, 3, 33 – 38.
[4] a) W. A. Nugent, R. J. McKinney, J. Org. Chem. 1985, 50, 5370 –
5372; b) A. L. Casalnuovo, T. V. RajanBabu, T. A. Ayers, T. H.
Warren, J. Am. Chem. Soc. 1994, 116, 9869 – 9882; c) M.
Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, D. Vogt,
W. Keim, J. Chem. Soc. Chem. Commun. 1995, 2177 – 2178.
[5] W. Keim, A. Behr, H.-O. Lꢁhr, J. Weisser, J. Catal. 1982, 78, 209 –
216.
In summary, we have documented a conceptually new
hydrocyanation reaction of non-activated olefins that gives
access to secondary and tertiary nitriles. It is a transformation
for which to date few procedures have been available. The
salient features of this process are the broad functional-group
tolerance, mild reaction conditions (room temperature,
EtOH as solvent), readily available starting materials
(TsCN, PhSiH3, catalysts, olefins), and ease of execution.
Moreover, the reaction can be conducted at preparatively
useful scales and essentially no workup is necessary. Further
exploration of the reaction to get deeper insight into this
process is underway, and the results will be reported as they
become available.
[6] W. Goertz, P. C. J. Kamer, P. V. N. M. van Leeuwen, D. Vogt,
Chem. Commun. 1997, 1521 – 1522.
[7] a) M. Hodgson, D. Parker, R. J. Taylor, G. Ferguson, Organo-
metallics 1988, 7, 1761 – 1766; b) T. Horiuchi, E. Shirikawa, K.
Nozaki, H. Takaya, Tetrahedron: Asymmetry 1997, 8, 57 – 63;
c) W. Goertz, P. C. J. Kamer, P. W. N. M. van Leeuwen, D. Vogt,
Chem. Eur. J. 2001, 7, 1614 – 1618; d) T. V. RajanBabu, A. L.
Casalnuovo, Comprehensive Asymmetric Catalysis, Vol. I (Eds.:
E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999,
p. 367; e) J. Wilting, M. Janssen, C. Mꢁller, D. Vogt, J. Am. Chem.
Soc. 2006, 128, 11374 – 11375.
[8] B. Saha, T. V. RajanBabu, Org. Lett. 2006, 8, 4657 – 4659.
[9] a) J. Waser, E. M. Carreira, J. Am. Chem. Soc. 2004, 126, 5676 –
5677; b) J. Waser, E. M. Carreira, Angew. Chem. Int. Ed. 2004,
43, 4099 – 4102.
Experimental Section
General procedure A: Catalyst 5a (3.3 mg, 0.005 mmol, 1 mol%) was
dissolved in EtOH (2 mL; absolute, Merck) at room temperature
under argon. After 2 min alkene (0.5 mmol) was added followed by
TsCN (144 mg, 0.75 mmol, 1.5 equiv; 95% purity, Aldrich,). tBuOOH
(5.5m solution in decane, 25 mL, 0.14 mmol, 0.30 equiv) was added
followed by PhSiH3 (98% ACROS, 62 mL, 0.5 mmol, 1.0 equiv) and
another portion of EtOH (1 mL). The resulting solution was stirred at
room temperature, and the reaction was monitored by TLC. After
completion (1–3 h) the solvent was removed by evaporation, and the
crude mixture purified by flash chromatography to afford the
corresponding nitrile.
General procedure B: Catalyst 6a (3 mg, 0.005 mmol, 1 mol%)
was dissolved in EtOH (2 mL; absolute, Merck) at room temperature
under argon. After 2 min alkene (0.5 mmol) was added to the red
solution followed by TsCN (115 mg, 0.6 mmol, 1.2 equiv; 95% purity,
Aldrich). Finally PhSiH3 (62 mL, 0.5 mmol, 1.0 equiv, 98% purity,
ACROS) was added, and another portion of EtOH (0.5 mL). The
resulting solution was stirred at room temperature, and the reaction
was monitored by TLC. After completion (1–3 h) the solvent was
removed by evaporation and the crude mixture purified by flash
chromatography to afford the corresponding nitrile.
[10] J. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2005,
127, 8294 – 8295.
[11] a) J. Waser, J. C. Gonzꢂlez-Gꢃmez, H. Nambu, P. Huber, E. M.
Carreira, Org. Lett. 2005, 7, 4249 – 4252; b) J. Waser, B. Gaspar,
H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693 –
11712.
[12] For radical cyanations using TsCN see: a) S. Kim, H.-J. Song,
Synlett 2002, 2110 – 2112; b) A.-P. Schaffner, V. Darmency, P.
Renaud, Angew. Chem. 2006, 118, 5979 – 5981; Angew. Chem.
Int. Ed. 2006, 45, 5847 – 5849; c) D. H. R. Barton, J. Cs. Jaszber-
enyi, E. A. Theodorakis, Tetrahedron 1992, 48, 2613 – 2626.
[13] dpm = dipivaloylmethanato.
[14] a) T. P. Yoon, E. N. Jacobsen, Scinece 2003, 299, 1691 – 1693;
b) J. F. Larrow, E. N. Jacobsen, Top. Organomet. Chem. 2004, 6,
123 – 152.
Received: February 8, 2007
Published online: May 4, 2007
Keywords: cobalt · cyanides · homogeneous catalysis ·
.
hydrocyanation · silanes
[15] T. Tokuyasu, S. Kunikawa, A. Masuyama, M. Nojima, Org. Lett.
2002, 4, 3595 – 3598.
[16] For the use of the Mn complex of the corresponding tetramethyl-
substituted ligand see: a) J. Du Bois, J. Hong, E. M. Carreira,
M. W. Day, J. Am. Chem. Soc. 1996, 118, 915 – 916; b) J. Du Bois,
C. S. Tomooka, J. Hong, E. M. Carreira, J. Am. Chem. Soc. 1997,
119, 3179 – 3180; c) J. Du Bois, C. S. Tomooka, J. Hong, E. M.
Carreira, Acc. Chem. Res. 1997, 30, 364 – 372.
[1] a) V. Y. Kukushkin, A. J. L. Pombeiro, Chem. Rev. 2002, 102,
1771 – 1802; b) S. J. Collier, P. Langer, Science of Synthesis,
Vol. 19, Georg Thieme, Stuttgart, 2004, pp. 403 – 425; c) V. Y.
Kukushkin, A. J. L. Pombeiro, Inorg. Chim. Acta 2005, 358, 1 –
21; d) M.-X. Wang, Top. Catal. 2005, 35, 117 – 130; e) H. C.
Brown, Y. M. Choi, S. Narasimhan, Synthesis 1981, 605 – 606;
f) R. A. Michelin, M. Mozzon, R. Bertani, Coord. Chem. Rev.
1996, 147, 299 – 338; g) V. K. Yadav, K. G. Babu, Eur. J. Org.
[17] G. A. Morris, H. Zhou, C. L. Stern, S. T. Nguyen, Inorg. Chem.
2001, 40, 3222 – 3227.
Angew. Chem. Int. Ed. 2007, 46, 4519 –4522
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4521