Journal of the American Chemical Society
Article
(5) (a) Smith, S. C.; Fu, G. C. Angew. Chem., Int. Ed. 2008, 47, 9334.
(b) Han, C.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 7532.
(c) Thaler, T.; Haag, B.; Gavryushin, A.; Schober, K.; Hartmann, E.;
Gschwind, R. M.; Zipse, H.; Mayer, P.; Knochel, P. Nat. Chem. 2010,
2, 125. (d) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011,
13, 1218. (e) Li, L.; Wang, C.−Y.; Huang, R.; Biscoe, M. R. Nat. Chem.
2013, 5, 607. (f) Liu, Z.; Dong, N.; Xu, M.; Sun, Z.; Tu, T. J. Org.
Chem. 2013, 78, 7436.
(18) Naturally occurring C-acyl -glycosides: (a) Wu, Q.; Cho, J.-G.;
Lee, D.-S.; Lee, D.-Y.; Song, N.-Y.; Kim, Y.-C.; Lee, K.-T.; Chung, H.-
G.; Choi, M.-S.; Jeong, T.-S.; Ahn, E.-M.; Kim, G.-S.; Baek, N.-I.
Carbohydr. Res. 2013, 372, 9. (b) Disadee, W.; Mahidol, C.;
Sahakitpichan, P.; Sitthimonchai, S.; Ruchirawat, S.; Kanchanapoom,
T. Phytochemistry 2012, 74, 115.
(19) For Ni-catalyzed cross-coupling of glycosyl halides, see:
(a) Gong, H.; Sinisi, R.; Gagne,
1908. (b) Gong, H.; Gagne, M. R. J. Am. Chem. Soc. 2008, 130, 12177.
(c) Gong, H.; Andrews, R. S.; Zuccarello, J. L.; Lee, S. J.; Gagne, M. R.
Org. Lett. 2009, 11, 879.
́
M. R. J. Am. Chem. Soc. 2007, 129,
́
(6) For a review on alkyl-organometallics, see: Jana, R.; Pathak, T. P.;
Sigman, M. S. Chem. Rev. 2011, 111, 1417.
́
(7) Samann, C.; Dhayalan, V.; Schreiner, P. R.; Knochel, P. Org. Lett.
̈
(20) Recent α-selective C-glycoside synthesis, Co-catalyzed: Nicolas,
L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.;
Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 11101.
2014, 16, 2418.
(8) For leading reviews on catalytic ketone synthesis, see:
(a) Johnson, J. B.; Rovis, T. Acc. Chem. Res. 2008, 41, 327. (b) Dieter,
R. K. Tetrahedron 1999, 55, 4177.
(9) For selected examples with alkyl-Zn: (a) Tamaru, Y.; Ochiai, H.;
Nakamura, T.; Yoshida, Z. Angew. Chem., Int. Ed. Engl. 1987, 26, 1157.
(b) Reddy, C. K.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1996, 35,
1700. Alkyl-Sn: (c) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc.
1988, 110, 1557. Alkyl-B: (d) Yu, Y.; Liebeskind, L. S. J. Org. Chem.
(21) Ar2Mg to glucosyl bromide: Lemaire, S.; Houpis, I. N.; Xiao, T.;
Li, J.; Digard, E.; Gozlan, C.; Liu, R.; Gavryushin, A.; Dien
̀
e, C.; Wang,
Y.; Farina, V.; Knochel, P. Org. Lett. 2012, 14, 1480.
(22) For a review, see: (a) Somsak, L. Chem. Rev. 2001, 101, 81. The
following glycosyl-metallics are known, but none is involved in
catalytic coupling reactions. Glycosyl-Mn: (b) Deshong, P.; Slough, G.
A.; Elango, V.; Trainor, G. L. J. Am. Chem. Soc. 1985, 107, 7788.
Glycosyl-Pd: (c) Munro-Leighton, C.; Adduci, L. L.; Becker, J. J.;
2004, 69, 3554. Alkyl-Mg: (e) Sherry, B. D.; Furstner, A. Acc. Chem.
̈
Res. 2008, 41, 1500. Alkyl-Zr: (f) Coia, N.; Mokhtari, N.; Vasse, J.-L.;
Szymoniak, J. Org. Lett. 2011, 13, 6292.
Gagne,
A.; Wenger, W.; Rajamannar, T. Chem. Commun. 1999, 2215.
Glycosyl-Si: (e) Pedretti, V.; Veyrieres, A.; Sinay, P. Tetrahedron
1990, 46, 77.
́
M. R. Organometallics 2011, 30, 2646. Glycosyl-B: (d) Vasella,
(10) (a) Johnson, J. B.; Bercot, E. A.; Rowley, J. M.; Coates, G. W.;
Rovis, T. J. Am. Chem. Soc. 2007, 129, 2718. (b) Bercot, E. A.; Rovis,
T. J. Am. Chem. Soc. 2002, 124, 174. (c) Bercot, E. A.; Rovis, T. J. Am.
Chem. Soc. 2005, 127, 247. (d) Zhang, Y.; Rovis, T. J. Am. Chem. Soc.
2004, 126, 15964. (e) Johnson, J. B.; Yu, R. T.; Fink, P.; Bercot, E. A.;
Rovis, T. Org. Lett. 2006, 8, 4307. (f) Kozuch, S.; Lee, S. E.; Shaik, S.
Organometallics. 2009, 28, 1303.
(11) For selected examples of carbonylative coupling of alkyl-
nucleophiles: (a) Ishiyama, T.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc.
Jpn. 1991, 64, 1999. (b) Lee, S. W.; Lee, K.; Seomoon, D.; Kim, S.;
Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P. H. J.
Org. Chem. 2004, 69, 4852. (c) Gøgsig, T. M.; Taaning, R. H.;
Lindhardt, A. T.; Skrydstrup, T. Angew. Chem., Int. Ed. 2012, 51, 798.
(12) Rieke, R. D.; Hanson, M. V.; Brown, J. D. J. Org. Chem. 1996,
61, 2726.
̀
̈
(23) For selected examples of acyl nucleophiles: (a) Obora, Y.;
Ogawa, Y.; Imai, Y.; Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001,
123, 10489. (b) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134,
8094.
(24) Pd-catalyzed coupling of sugar-Sn with PhCOCl: Belosludtsev,
Y. Y.; Bhatt, R. K.; Falck, J. R. Tetrahedron Lett. 1995, 36, 5881.
(25) Synthesis of β-acyl C-glycosides, from: sugar benzothiazoles
(a) Dondoni, A.; Catozzi, N.; Marra, A. J. Org. Chem. 2005, 70, 9257.
Sugar CN: (b) Knapp, S.; Shieh, W.−C.; Jaramillo, C.; Trilles, R. V.;
Nandan, S. R. J. Org. Chem. 1994, 59, 946. Sugar acids: (c) Wolfgang
Weiser, W.; Lehmann, J.; Brewer, C. F.; Hehre, E. J. Carbohydr. Res.
1988, 183, 287.
́
(26) Synthesis of α-acyl C-glycosides from: sugar alkyne: (a) Alvarez-
(13) For seminal examples and leading reviews on the Ni-catalyzed
coupling of alkyl halides, see: (a) Rudolph, A.; Lautens, M. Angew.
Chem., Int. Ed. 2009, 48, 2656. (b) Frisch, A. C.; Beller, M. Angew.
Chem., Int. Ed. 2005, 44, 674. (c) Hu, X. Chem. Sci. 2011, 2, 1867.
(d) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.
Dorta, D.; Leon, E. I.; Kennedy, A. R.; Riesco-Fagundo, C.; Suarez, E.
́
́
Angew. Chem., Int. Ed. 2008, 47, 8917. Sugar allene: (b) Geng, Y.;
Kumar, A.; Faidallah, H. M.; Albar, H. A.; Mhkalid, I. A.; Schmidt, R.
R. Bioorg. Med. Chem. 2013, 21, 4793. Sugar acyl oxazoline:
(c) Jensen, C. M.; Lindsay, K. B.; Taaning, R. H.; Karaffa, J.; Mette
Hansen, A.; Skrydstrup, T. J. Am. Chem. Soc. 2005, 127, 6544. Sugar
alkene to α-C-glycosyl acid: (d) Wong, C.-H.; Moris-Varas, F.; Hung,
S.-C.; Marron, T.-G.; Lin, C.-C.; Gong, K. W.; Weitz-Schmidt, G. J.
Am. Chem. Soc. 1997, 119, 8152.
(e) Devasagayaraj, A.; Studemann, T.; Knochel, P. Angew. Chem., Int.
̈
Ed. Engl. 1995, 34, 2723. For Ni-catalyzed alkyl halides with CO2:
(f) Liu, Y.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 11212.
(14) For recent reviews on reductive coupling of two electrophiles,
see: (a) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.;
̈
(27) Dimerization of activated tertiary alkyl halides is known:
(a) Peng, Y.; Luo, L.; Yan, C.-S.; Zhang, J.-J.; Wang, Y.-W. J. Org.
Chem. 2013, 78, 10960. (b) Wada, M.; Murata, T.; Oikawa, H.; Oguri,
H. Org. Biomol. Chem. 2014, 12, 298.
(28) (a) Shukla, P.; Hsu, Y.-C.; Cheng, C.-H. J. Org. Chem. 2006, 71,
655. (b) Keh, C. C. K.; Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125,
4062.
Gosmini, C.; von Wangelin, A. J. Chem.Eur. J. 2014, 20, 6828.
(b) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793.
(c) Moragas, T.; Correa, A.; Martin, R. Chem.Eur. J. 2014, 20, 8242.
(15) (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem.
Soc. 2013, 135, 7442. (b) Wotal, A. C.; Weix, D. J. Org. Lett. 2012, 14,
1476. (c) Amatore, C.; Jutand, A.; Per
Chem. 2000, 131, 1293. (d) d’Incan, E.; Sibille, S.; Per
́
ichon, J.; Rollin, Y. Monatsh.
ichon, J.;
́
(29) See the Supporting Information for details.
Moingeon, M.−O.; Chaussard, J. Tetrahedron Lett. 1986, 27, 4175.
(e) Onaka, M.; Matsuoka, Y.; Mukaiyama, T. Chem. Lett. 1981, 10,
531.
(30) Method A proved to be ineffective for 16b giving only hydro-
dehalogenation product. Although 16a generated 17a in 90% yield, the
yields for other alkyl bromides in Table 3 were generally moderate
(see Table S5 in the Supporting Information). Also, extension of
methods B and C to t-BuBr was not successful. Method B only resulted
in a trace amount of 2a. Method C though provided 2a in 50% yield; 2-
bromo-2-methylhexane did not result in 8.
(16) (a) Yin, H.; Zhao, C.; You, H.; Lin, Q.; Gong, H. Chem.
Commun. 2012, 48, 7034. (b) Wu, F.; Lu, W.; Qian, Q.; Ren, Q.;
Gong, H. Org. Lett. 2012, 14, 3044. (c) Lu, W.; Liang, Z.; Zhang, Y.;
Wu, F.; Qian, Q.; Gong, H. Synthesis 2013, 45, 2234.
(17) For recent reviews in C-glycoside biology and biosynthesis, see:
(a) Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22,
742. (b) Hultin, P. G. Curr. Top. Med. Chem. 2005, 5, 1299. (c) Zou,
W. Curr. Top. Med. Chem. 2005, 5, 1363. (d) Compain, P.; Martin, O.
R. Bioorg. Med. Chem. 2001, 9, 3077. (e) Nicotra, F. Top. Curr. Chem.
1997, 187, 55.
(31) (a) Formation of acid anhydrides via reactions of acids and
(Boc)2O can be promoted by MgCl2: Bartoli, G.; Bosco, M. Synthesis
2007, 22, 3489. (b) Suzuki: Gooßen, L. J.; Ghosh, K. Angew. Chem.,
Int. Ed. 2001, 40, 3458.
(32) Oxidative addition of alkyl acid anhydride to bipyridine-Ni0 is
known, but with no characterization data. (a) Uhlig, E.; Bernd, N. Z.
F
dx.doi.org/10.1021/ja510653n | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX