Communications
2.8 mmol) in toluene (10 mL) at ꢀ788C. The volatiles were removed
Am.Chem.Soc. 1995, 117, 8594 – 8599; c) M. Murakami, M.
Hasegawa, Angew.Chem. 2004, 116, 4981 – 4984; Angew.Chem.
Int.Ed. 2004, 43, 4873 – 4876; d) K. A. Nguyen, M. S. Gordon, J.
Am.Chem.Soc. 1995, 117, 3835 – 3847; e) A. Kinal, P. Piecuch, J.
Phys.Chem.A 2007, 111, 734 – 742; f) R. Srinivasan, J.Am.
Chem.Soc. 1963, 85, 4045 – 4046; g) S. Sakai, Chem.Phys.Lett.
2000, 319, 687 – 694; h) M. Garavelli, F. Bernardi, M. Olivucci,
under vacuum at 08C, the residue was dissolved in hexane, and the
salts were removed by filtration. Yellow crystals of 7BPc were obtained
from a concentrated hexane solution at ꢀ308C (0.88 g, 62% yield).
M.p. 127–1288C (dec.); 31P{1H} NMR (121.5 MHz, CDCl3): d =
17.2 ppm; 11B{1H} NMR (96.3 MHz, CDCl3): d = 81, 56 ppm.
1BPc: A solution of Ph2PLi (0.11 g, 0.56 mmol) in [D8]THF
(0.8 mL) was added to 1,2-diduryl-1,2-dichlorodiborane (0.10 g,
0.28 mmol) at ꢀ788C. The reaction mixture was stirred for 10 min
at ꢀ788C. Multinuclear NMR spectroscopy indicated the quantitative
formation of 1BPc. Red crystals suitable for a single-crystal X-ray
diffraction study were obtained from a concentrated THF solution at
ꢀ408C. 31P{1H} NMR (121.5 MHz, [D8]THF): d = 12 ppm;
11B{1H} NMR (96.3 MHz, [D8]THF): d = 76 ppm.
M. J. Bearpark, S. Klein, M. A. Robb, J.Phys.Chem.A
105, 11496 – 11504.
[6] For recent studies, see: a) V. Y. Lee, H. Yasuda, A. Sekiguchi, J.
Am.Chem.Soc. 2007, 129, 2436 – 2437; b) J. C. Slootweg, A. W.
2001,
Ehlers, K. Lammerstma, J.Mol.Model.
2006, 12, 531 – 536;
c) J. C. Slootweg, S. Krill, F. J. J. de Kanter, M. Schakel, A. W.
Ehlers, M. Lutz, A. L. Spek, K. Lammerstma, Angew.Chem.
2005, 117, 6737 – 6740; Angew.Chem.Int.Ed. 2005, 44, 6579 –
6582; d) J. C. Slootweg, F. J. J. de Kanter, M. Schakel, A. W.
Ehlers, B. Gehrhus, M. Lutz, A. M. Mills, A. L. Spek, K.
Lammerstma, Angew.Chem. 2004, 116, 3556 – 3559; Angew.
Chem.Int.Ed. 2004, 43, 3474 – 3477; e) T. Iwamoto, D. Yin, C.
Kabuto, M. Kira, J.Am.Chem.Soc. 2001, 123, 12730 – 12731.
[7] a) R. Appel, V. Barth, F. Knoch, Chem.Ber. 1983, 116, 938 – 950;
b) A. M. Arif, A. R. Barron, A. H. Cowley, S. W. Hall, J.Chem.
Soc.Chem.Commun. 1988, 171 – 172.
[8] a) E. Niecke, A. Fuchs, F. Baumeister, M. Nieger, W. W.
Schoeller, Angew.Chem. 1995, 107, 640 – 642; Angew.Chem.
Int.Ed.Engl. 1995, 34, 555 – 557; b) O. Schmidt, A. Fuchs, D.
Gudat, M. Nieger, W. Hoffbauer, E. Niecke, W. W. Schoeller,
Angew.Chem. 1998, 110, 995 – 998; Angew.Chem.Int.Ed. 1998,
37, 949 – 952; c) E. Niecke, A. Fuchs, M. Nieger, Angew.Chem.
1999, 111, 3213 – 3216; Angew.Chem.Int.Ed. 1999, 38, 3028 –
3031; d) W. W. Schoeller, C. Begemann, E. Niecke, D. Gudat, J.
Phys.Chem.A 2001, 105, 10731 – 10738; e) H. Sugiyama, S. Ito,
M. Yoshifuji, Angew.Chem. 2003, 115, 3932 – 3934; Angew.
Chem.Int.Ed. 2003, 42, 3802 – 3804; f) M. Sebastian, M. Nieger,
D. Szieberth, L. Nyulµszi, E. Niecke, Angew.Chem. 2004, 116,
3BPc: When a [D8]THF solution of 1BPc, prepared as described
above, was warmed to ꢀ108C, the color changed from red to yellow.
The volatiles were removed under reduced pressure, and toluene
(30 mL) was added. After filtration and reduction of the volume,
cooling at ꢀ308C gave 3BPc as yellow crystals (0.12 g, 66% yield).
31P{1H} NMR (121.5 MHz, [D8]THF): d = ꢀ51 ppm; 11B{1H} NMR
(96.3 MHz, [D8]THF): d = ꢀ13 ppm.
Photolysis of 3BPb: A solution of 3BPb (0.10 g, 0.22 mmol) in
[D8]toluene (0.8 mL) was irradiated at l = 254 nm for 2 h at room
temperature. 31P NMR spectroscopy indicated the quantitative con-
version of 3BPb into 5BPb. Colorless crystals of 5BPb were obtained
from [D8]toluene solution at ꢀ308C. M.p. 124–1278C; 31P{1H} NMR
(121.5 MHz, C6D6): d = 65 (d, JPP = 301 Hz), 5 ppm (d, JPP = 301 Hz);
11B{1H} NMR (96.3 MHz, C6D6): d = 56, 7 ppm.
Photolysis of 3BPc: When the irradiation at l = 254 nm of a
solution of 3BPc (0.10 g, 0.20 mmol) in [D8]toluene at ꢀ608C was
monitored by 31P NMR spectroscopy (121.5 MHz), signals corre-
sponding to 5BPc were observed at d = 80 (d, JPP = 324 Hz) and
ꢀ12 ppm (d, JPP = 324 Hz). Upon warming to ꢀ508C, 5BPc quantita-
tively isomerized into 8BPc, which was obtained as colorless crystals.
31P{1H} NMR (121.5 MHz, C7D8): d = 31 (d, JPP = 48 Hz), ꢀ3 ppm (d,
2JPP = 48 Hz); 11B{1H} NMR (96.3 MHz, C7D8): d = 80 ppm.
647 – 651; Angew.Chem.Int.Ed.
2004, 43, 637 – 641; g) M.
Sebastian, A. Hoskin, M. Nieger, L. Nyulµszi, E. Niecke, Angew.
Chem. 2005, 117, 1429 – 1432; Angew.Chem.Int.Ed. 2005, 44,
1405 – 1408; h) M. Yoshifuji, A. J. Arduengo III, T. A. Konova-
lova, L. D. Kispert, M. Kikuchi, S. Ito, Chem.Lett. 2006, 35,
1136 – 1137.
Received: April 10, 2007
Published online: June 25, 2007
Keywords: boron · butadienes · heterocycles · phosphorus ·
.
valence isomerization
[9] H. Hopf, H. Lipka, M. Traetteberg, Angew.Chem. 1994, 106,
232 – 233; Angew.Chem.Int.Ed.Engl. 1994, 33, 204 – 205.
[10] It has been claimed that, under photolytic excitation, the parent
butadiene 1C gives rise to bicyclo[1.1.0]butane (3C) in trace
amounts.[5f]
[11] Several transient heterobutadiene systems have been postulated
to rearrange into the bicyclic isomers: a) T. Iwamoto, M.
Tamura, C. Kabuto, M. Kira, Organometallics 2003, 22, 2342 –
2344; b) T. Iwamoto, M. Kira, Chem.Lett. 1998, 277 – 278; c) M.
[1] R. Hoffmann, Angew.Chem. 1982, 94, 725 – 739; Angew.Chem.
Int.Ed.Engl. 1982, 21, 711 – 724.
[2] T. Muller in Organosilicon Chemistry IV: From Molecules to
Materials (Eds.: N. Auner, J. Weis), Wiley-VCH, Weinheim,
2000, p. 110.
[3] K. A. Nguyen, M. S. Gordon, J. A. Boatz, J.Am.Chem.Soc.
1994, 116, 9241 – 9249.
[4] Upon optimization of the substituents, a few singlet cyclo-
pentane-1,3-diyls have been detected, but their half-lives in
solution at room temperature are in the microsecond range:
a) M. Abe, W. Adam, W. T. Borden, M. Hattori, D. A. Hrovat,
Kira, T. Iwamoto, C. Kabuto, J.Am.Chem.Soc.
1996, 118,
10303 – 10304; d) M. Driess, H. Pritzkow, S. Rell, R. Janoschek,
Inorg.Chem. 1997, 36, 5212 – 5217; e) R. Appel, B. Niemann, M.
Nieger, Angew.Chem. 1988, 100, 957 – 958; Angew.Chem.Int.
Ed.Engl. 1988, 27, 957 – 958; f) E. Niecke, O. Altmeyer, M.
Nieger, J.Chem.Soc.Chem.Commun. 1988, 945 – 946.
M. Nojima, K. Nozaki, J. Wirz, J.Am.Chem.Soc.
2004, 126,
574 – 582; b) M. Abe, S. Kawanami, C. Ishihara, M. Nojima, J.
Org.Chem. 2004, 69, 5622 – 5626; c) M. Abe, C. Ishihara, S.
Kawanami, A. Masuyama, J.Am.Chem.Soc. 2005, 127, 10 – 11;
d) M. Abe, M. Hattori, A. Takegami, A. Masuyama, T. Hayashi,
[12] a) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D.
Bourissou, G. Bertrand, Science 2002, 295, 1880 – 1881; b) D.
Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D.
Bourissou, G. Bertrand, Angew.Chem. 2004, 116, 595 – 597;
Angew.Chem.Int.Ed. 2004, 43, 585 – 587; c) A. Rodriguez, F. S.
Tham, W. W. Schoeller, G. Bertrand, Angew.Chem. 2004, 116,
4984 – 4988; Angew.Chem.Int.Ed. 2004, 43, 4876 – 4880; d) A.
Rodriguez, R. A. Olsen, N. Ghaderi, D. Scheschkewitz, F. S.
Tham, L. J. Mueller, G. Bertrand, Angew.Chem. 2004, 116,
4988 – 4991; Angew.Chem.Int.Ed. 2004, 43, 4880 – 4883; e) H.
S. Seki, S. Tagawa, J.Am.Chem.Soc.
2006, 128, 8008 – 8014;
e) M. Abe, E. Kubo, K. Nozaki, N. Koichi, T. Matsuo, T. Hayashi,
Angew.Chem. 2006, 118, 7992 – 7995; Angew.Chem.Int.Ed.
2006, 45, 7828 – 7831; f) M. Abe, J.Synth.Org.Chem.Jpn. 2007,
65, 14 – 20.
[5] a) W. Cooper, W. D. Walters, J.Am.Chem.Soc. 1958, 80, 4220 –
4224; b) O. Wiest, K. N. Houk, K. A. Black, B. E. Thomas IV, J.
5744
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 5741 –5745