Angewandte
Chemie
performed far in the product region to explain the intra-
molecular KIEs.
In summary, the present experimental data verify with
hindsight the importance of dynamic effects in the thermal
C2–C6 cyclization of enyne allenes as predicted by Singleton/
Lipton through trajectory calculations on the parent enyne
allene E6. It seems that the influence of substituents in E1–E5
can be explained qualitatively from the dynamic computa-
tions on E6 just by mixing different contributions of
“concerted” and “stepwise” trajectories. Hence, radical-
stabilizing substituents do lead to large percentage of stepwise
trajectories, while other substituents lead to a domination of
concerted ones. Future experimental studies on the C2–C6
cyclization will further extend the set of data, as additional
substitutent changes at C1, C7, and even at C3 open the way for
additional tests. Our experimental KIEs challenge the
theoretical understanding and modeling of nonstatistical
kinetic processes, as now a large set of data must be
reproduced quantitatively in a consistent theoretical treat-
ment.
Figure 1. Energy profile for the C2–C6 cyclization of E6 (R1 =CH3,
R=R2 =R3 =H, no benzannulation). Relative energies are given with
respect to the energy of D. For two fixed distances the energy was
optimized with respect to the other degrees of freedom using the
TURBOMOLE package.[18]
We have performed a few “on the fly” trajectory
calculations on E6 supportive of the analysis in the Single-
ton/Lipton paper.[12] The smooth energy profile behind TS1
(see Figure 2) supports strongly oscillating trajectories
Received: February 15, 2007
Revised: May 25, 2007
Published online: August 6, 2007
Keywords: diradicals · dynamic effects · ene reactions ·
.
enyne allenes · kinetic isotope effect
[1] a) B. K. Carpenter, Acc. Chem. Res. 1992, 25, 520 – 528; b) B. K.
Carpenter, Angew. Chem. 1998, 110, 3532 – 3543; Angew. Chem.
Int. Ed. 1998, 37, 3340 – 3350; c) B. K. Carpenter, Chem. Soc.
Rev. 2006, 35, 736 – 747.
[2] a) B. R. Ussing, D. A. Singleton, J. Am. Chem. Soc. 2005, 127,
2888 – 2899; b) B. R. Ussing, C. Hang, D. A. Singleton, J. Am.
Chem. Soc. 2006, 128, 7594 – 7607.
Figure 2. Mechanistic formulation of the thermal ene reaction. The
above energy profile (before TS1) urged us to consider a variety of
individual thermalized trajectories already starting from the region E.
[3] a) C. Doubleday, M. Nendel, K. N. Houk, D. Thweatt, M. Page, J.
Am. Chem. Soc. 1999, 121, 4720 – 4721; b) C. Doubleday, C. P.
Suhrada, K. N. Houk, J. Am. Chem. Soc. 2006, 128, 90 – 94.
[4] a) C. Doubleday, K. Bolton, W. L. Hase, J. Am. Chem. Soc. 1997,
119, 5251 – 5252; b) C. Doubleday, K. Bolton, W. L. Hase, J.
Phys. Chem. A 1998, 102, 3648 – 3658; c) L. Sun, K. Song, W. L.
Hase, Science 2002, 296, 875 – 878.
[5] a) H. Yamataka, M. Aida, M. Dupuis, Chem. Phys. Lett. 2002,
353, 310 – 316; b) H. Yamataka, M. Aida, M. Dupuis, J. Phys.
Org. Chem. 2003, 16, 475 – 483; c) S. C. Ammal, H. Yamataka,
M. Aida, M. Dupuis, Science 2003, 299, 1555 – 1557; d) A. G.
Leach, E. Goldstein, K. N. Houk, J. Am. Chem. Soc. 2003, 125,
8330 – 8339; e) À. Gonzalez-Lafont, M. Moreno, J. M. Lluch, J.
Am. Chem. Soc. 2004, 126, 13089 – 13094; f) C. P. Suhrada, C.
Selçuki, M. Nendel, C. Cannizzaro, K. N. Houk, P.-J. Rissing, D.
Baumann, D. Hasselmann, Angew. Chem. 2005, 117, 3614 – 3618;
Angew. Chem. Int. Ed. 2005, 44, 3548 – 3552.
[6] a) D. A. Hrovat, S. Fang, W. T. Borden, B. K. Carpenter, J. Am.
Chem. Soc. 1997, 119, 5253 – 5254; b) A. Kless, M. Nendel, S.
Wilsey, K. N. Houk, J. Am. Chem. Soc. 1999, 121, 4524 – 4525.
[7] a) S. L. Debbert, B. K. Carpenter, D. A. Hrovat, W. T. Borden, J.
Am. Chem. Soc. 2002, 124, 7896 – 7897; b) D. A. Singleton, C.
Hang, M. J. Szymanski, M. P. Meyer, A. G. Leach, K. T. Kuwata,
J. S. Chen, A. Greer, C. S. Foote, K. N. Houk,J. Am. Chem. Soc.
2003, 125, 1319 – 1328; c) S. M. Bachrach, J. C. Gilbert, J. Org.
Chem. 2004, 69, 6357 – 6364; d) M. J. McGuire, P. Piecuch, J. Am.
Chem. Soc. 2005, 127, 2608 – 2614.
between diradical and productlike structures. Work is in
progress to analyze the dynamics based on the potential
presented in Figure 1 in more detail using classical and
quantum mechanical wave-packet methods.[17]
We expect that this picture will change appreciably when
we consider quantum mechanical computations of enyne
allenes with radical-stabilizing substituents, as both the
energy of D and TSZ1(D) may be lowered with respect to
TSZ1(conc), and the reaction will proceed in an increasingly
stepwise manner. Clearly, for all thermal enyne allene
thermolyses studied so far experimentally by KIEs, no
single case seems to follow the classical statistical kinetic
model. While our experimental data confirm the Lipton/
Singleton model,[12] one has to assume in light of our
computational results that the model has to be refined by
the assumption of a broad transition-state zone. This suggests
that for future dynamic computations on the C2–C6 cyclization
of enyne allenes, thermalized trajectories starting in region E
must be considered (Figure 2) and that the analysis must be
Angew. Chem. Int. Ed. 2007, 46, 6911 –6914
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6913