2708
J. Luo et al. / Tetrahedron Letters 52 (2011) 2706–2709
Bu
References and notes
N
58%
C8H17
1. Lawrence, S. A. In: Amines Synthesis Properties and Applications; Cambridge
University Press: Cambridge, 2004; Landquist, J. K. In Comprehensive
Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: New
York, 1984; Patai, S. In: The Chemistry of Amines, Nitroso, Nitro and Related
Groups; John Wiley & Sons LTD: Chichester, 1996.
2. For selected reviews, see: (a) Salvatore, R. N.; Yoon, C. H.; Jung, K. W.
Tetrahedron 2001, 57, 7785; (b) Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M.
Adv. Synth. Catal. 2002, 344, 795; (c) Gomez, S.; Peters, J. A.; Maschmeyer, T.
Adv. Synth. Catal. 2002, 344, 1037; (d) Müller, T.; Hultzsch, K.; Yus, M.; Foubelo,
F.; Tada, M. Chem. Rev. 2008, 108, 3795; (e) Evano, G.; Blanchard, N.; Toumi, M.
Chem. Rev. 2008, 108, 3054; (f) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.
2009, 48, 6954.
+
+
dppf
Bu
N
nC8H17NBu2
1a
+
16%
7%
chlorobenzene
145 oC, 15 h
Bu
N
Bu
Scheme 2. 4-Methylbenzyl alcohol reacts with dibutyloctylamine.
3. For reviews, see: Hartwig, J. F. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Jiang, L.; Buchwald,
S. L. In: Metal-Catalyzed Cross-Coupling Reactions, second ed; Wiley-VCH:
Weinheim Germany, 2004. Vol. 2, p 699; (c) Mauger, C.; Mignani, G. Aldrich
Acta 2006, 39, 17; (d) Willis, M. Angew. Chem., Int. Ed. 2007, 46, 3402; (e) Surry,
D.; Buchwald, S. Angew. Chem., Int. Ed. 2008, 47, 6338; (f) Aubin, Y.;
Fischmeister, C.; Thomas, C.; Renaud, J. Chem. Soc. Rev. 2010, 39, 4130.
4. Dayagi, S. In The Chemistry of the Carbon-Nitrogen Double Bond; Patai, S., Ed.;
Interscience: London, 1970. Chapter 2, pp 61-147.; For selected examples, see:
(b) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J.
Org. Chem. 1996, 61, 3849; (c) Mizuta, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
2005, 70, 2195; (d) Lee, O. Y.; Law, K. L.; Yang, D. Org. Lett. 2009, 11, 3302.
5. Tojo, G.; Fernández, M. In: Oxidation of Alcohols to Aldehydes and Ketones;
Springer: New York, 2006; (b) Dobereiner, G.; Crabtree, R. Chem. Rev. 2010, 110,
681.
6. (a) Grigg, R.; Mitchell, T.; Sutthivaiyakit, S.; Tongpenyai, N. J. Chem. Soc. Chem.
Commun. 1981, 611; (b) Watanable, Y.; Tsuji, Y.; Ohsugi, Y. Tetrahedtron Lett.
1981, 22, 2667; (c) Watanable, Y.; Tsuji, Y.; Ige, H.; Ohsugi, Y.; Ohta, T. J. Org.
Chem. 1984, 49, 3359.
7. (a) Fujita, K.; Yamaguchi, R. Synlett 2005, 560; (b) Fujita, K.; Enoki, Y.;
Yamaguchi, R. Tetrahedron 2008, 64, 1943; (c) Zhu, M. W.; Fujita, K.;
Yamaguchi, R. Org. Lett. 2010, 12, 1336.
Table 3
Amination of alcohol in chlorobenzene and in neata
NBu2
OH
cat
145 o
NBu
+
+
NBu3
C
R
R
2
R
1
2
3
4
Entry
R
Solvent
Yieldb (%)
3
4
1
2
3
4
CH3
CH3
F
Chlorobenzene
None
Chlorobenzene
None
84
2
87
2
9
75
10
81
F
a
Conditions:
1
(0.6 mmol), 2a (0.2 mmol), RuCl3ꢀ3H2O (0.01 mmol), dppf
(0.01 mmol), 145 °C, 15 h under argon.
b
Isolated yields for major products and GC yields for minor products.
8. (a) Tillack, A.; Hollmann, D.; Michalik, D.; Beller, M. Tetrahedron Lett. 2006, 47,
8881; (b) Hollmann, D.; Tillack, A.; Michalik, D.; Jackstell, R.; Beller, M. Chem.
Asian J. 2007, 2, 403.
Other tertiary amines were also investigated under the same
reaction conditions. 4-Methylbenzyl alcohol also reacted with
trioctylamine and trihexylamine and gave the corresponding
products in good yields (entries 16 and 17). However, tripropyl-
amine only gave moderate yield probably due to its low boiling
point (entry 18), which was further confirmed by using triethyl-
amine as substrate and less than 10% desired product was ob-
tained. Attempts to react alcohols with aromatic tertiary
amines and tribenzylamine (entry 19) were unsuccessful. Inter-
estingly, tertiary amine 3a can further react with 4-methylbenzyl
alcohol and gave the corresponding product in 76% yield (entry
20). Three products were observed when 1a reacted with dibuty-
loctylamine (Scheme 2).
Another feature of this kind of ruthenium-catalyzed direct
amination of alcohols with tertiary amines is that the mono-
and bis-substituted products can be synthesized selectively by
changing the solvent condition. For example, when p-methylben-
zyl alcohol and p-fluorobenzyl alcohol reacted with tributyl-
amine in chlorobenzene mono-substituted products were the
major products. In contrast, bis-substituted reaction was the ma-
jor reaction when the reaction was carried out in the absence of
solvent (Table 3).
9. (a) Saidi, O.; Blacker, A.; Farah, M.; Marsden, S.; Williams, J. M. J. Chem.
Commun. 2010, 46, 1541; (b) Hamid, M.; Liana Allen, C.; Lamb, G.; Maxwell, A.;
Maytum, H.; Watson, A.; Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1766.
10. (a) Gunanathan, C.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47, 8661; (b)
Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199; (c)
Zweifel, T.; Naubron, J.; Grutzmacher, H. Angew. Chem., Int. Ed. 2009, 48, 559;
(d) Blank, B.; Michlik, S.; Kempe, R. Adv. Synth. Catal. 2009, 351, 2903; (e) Saidi,
O.; Blacker, A.; Farah, M.; Marsden, S.; Williams, J. M. J. Angew. Chem., Int. Ed.
2009, 48, 7375; (f) He, J.; Kim, J.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int.
Ed. 2009, 48, 9888; (g) Cui, X.; Shi, F.; Tse, M.; Gördes, D.; Thurow, K.; Beller, M.;
Deng, Y. Adv. Synth. Catal. 2009, 351, 2949; (h) Shi, F.; Tse, A.; Cui, X.; Gördes,
D.; Michalik, D.; Thurow, K.; Deng, Y.; Beller, M. Angew. Chem. Int., Ed. 2009, 48,
5912; (i) Shi, F.; Tse, M.; Zhou, S.; Pohl, M.; Radnik, J.; Hübner, S.; Jähnisch, K.;
Brücker, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.
11. For imines formation from alcohols and amines, see: (a) Gnanaprakasam, B.;
Zhang, J.; Milstein, D. Angew. Chem., Int. Ed. 2010, 49, 1468; (b) Bähn, S.; Imm,
S.; Mevius, K.; Neubert, L.; Tillack, A.; Williams, J. M. J.; Beller, M. Chem. Eur. J.
2010, 16, 3590.
12. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790; (b)
Ghosh, S.; Muthaiah, S.; Zhang, Y.; Xu, X.; Hong, S. Adv. Synth. Catal. 2009, 351,
2643.
13. For reviews on C–N bonds formation using borrowing hydrogen, see: (a)
Guillena, G.; Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358; (b)
Hamid, M.; Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349,
1555; (c) Lamb, G. W.; Williams, J. M. J. Chim. Oggi 2008, 26, 17; (d) Nixon,
T. D.; Whittlesey, M. K.; Williams, J. M. J. Dalton Trans. 2009, 753; (e)
Guillena, G.; Ramón, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611; (f) Watson,
A.; Williams, J. M. J. Science 2010, 329, 635; (g) Fujita, K. I.; Yamaguchi, R.
Synlett 2005, 4, 560.
14. For other selected examples on C–N bonds formation using borrowing
hydrogen, see: (a) Watanable, Y.; Morisaki, Y.; Kondo, T.; Mitsudo, T. J. Org.
Chem. 1996, 61, 4214; (b) Cami-Kobeci, G.; Slatford, P.; Whittlesey, M. K.;
Williams, J. M. J. Bioorg. Med. Chem. Lett. 2005, 15, 535; (c) Hamid, M.;
Williams, J. M. J. Chem. Commun. 2007, 725; (d) Naskar, S.; Bhattacharjee, M.
Tetrahedron Lett. 2007, 48, 3367; (e) Hamid, M.; Williams, J. M. J. Tetrahedron
Lett. 2007, 48, 8263; (f) Blank, B.; Madalska, M.; Kempe, R. Adv. Synth. Catal.
2008, 350, 749; (g) Fujita, K. I.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008,
64, 1943; (h) Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, K. I. Org. Lett. 2008,
10, 181; (i) Lamb, G.; Watson, A.; Jolley, K.; Maxwell, A.; Williams, J. M. J.
Tetrahedron Lett. 2009, 50, 3374; (j) Shimizu, K.; Nishimura, M.; Satsuma, A.
ChemCatChem 2009, 1, 497; (k) Martínez, R.; Ramón, D.; Yus, M. Org. Biomol.
Chem. 2009, 7, 2176; (l) Bähn, A.; Tillack, A.; Imm, S.; Mevius, K.; Michalik,
D.; Hollmann, D.; Neubert, L.; Beller, M. ChemSusChem 2009, 2, 551; (m)
Fujita, K.; Komatsubara, A.; Yamaguchi, R. Tetrahedron 2009, 65, 3624; (n)
Pingen, D.; Muller, C.; Vogt, D. Angew. Chem., Int. Ed. 2010, 49, 8130; (o) Cui,
In summary, we have developed a selective ruthenium-cata-
lyzed unsymmetric tertiary amine formation reaction using ter-
tiary amines and primary alcohols as starting materials. Ligand
and solvent both play a key role in this reaction. The reaction pro-
ceeded well for a range of different substrate. Further investigation
including the scope and mechanism is in progress in our
laboratory.
Acknowledgments
This work was supported by the National Natural Science Foun-
dation of China (20902076) and Xiangtan University ‘‘Academic
Leader Program’’ (09QDZ12). We thank Professor C.-J. Li (McGill
University) and Professor Q. H. Fan (ICCAS) for helpful discussions.