Communications
without racemization. The transannular attack of A at the
the TRAL reaction to other heterocyclic substrates for the
synthesis of a broader range of pharmacological scaffolds, in
particular for the synthesis of statine derivatives.
activated lactam carbonyl group then provides the oxyanion
B, in which the aziridine moiety is located on the less bulky
face rather than on the face occupied by the side chain R1. In a
last step, the opening of the aziridine ring leads to the desired
Received: May 15, 2007
Revised: July 7, 2007
Published online: August 23, 2007
bis-Boc 3-aminopyrrolidine-2,4-dione or the corresponding
2
À
enol. In the presence of an alkylating reagent R X, the
constrained ring system may hinder the attack of B at the face
of the heterocycle with the Boc–aziridine moiety. The
electrophile can only approach the open face of the hetero-
cycle, and the R1 group is pointed away from the Boc–
aziridine moiety. This hypothesis is consistent with the
configuration established for compounds 5. The unexpected
rearrangement that we have described seems to be related to
well-known conventional transformations, such as the Die-
ckmann and Gabriel–Colman reactions and the first step of
the Dakin–West reaction. In accordance with the postulated
mechanism, we propose the name “transannular rearrange-
ment of activated lactams (TRAL)” for this reaction.
To expand the scope of the TRAL reaction, the asym-
metric Claisen-like rearrangement described for 3-O-allyl-
(isopropylidene) ascorbate[2] was applied to the pyrrolidine-
2,4-dione derivative 2e, following its conversion into 6 by
O allylation, to give compound 7 in a stereoselective manner
(Scheme 3). The TRAL/alkylation and Claisen-like rear-
À
Keywords: C C activation · diastereoselectivity ·
diketopiperazines · heterocycles · rearrangement
.
[1] G. Dewynter, D. Farran, J. Martinez, Patent No. 0753973,
deposited March 21, 2007.
[2] K. Wimalasena, M. P. D. Mahindaratne, J. Org. Chem. 1994, 59,
3427 – 3432.
[3] M. G. Kulkarni, S. R. Thopate, Tetrahedron 1996, 52, 1293 – 1302.
[4] B. J. L. Royles, Chem. Rev. 1995, 95, 1981 – 2001.
[5] P. Catejón, A. Moyano, M. A. Pericas, A. Riera, Tetrahedron
1996, 52, 7063 – 7086.
[6] T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1976, 49, 3287 –
3290.
[7] P. Jouin, B. Castro, D. Nisato, J. Chem. Soc. Perkin Trans. 1 1987,
1177 – 1182.
[8] S. Klutchko, P. OꢀBrien, J. C. Hodges, Synth. Commun. 1989, 19,
2573 – 2583.
[9] J. Poncet, P. Jouin, B. Castro, L. Nicolas, M. Boutard, A.
Gaudemer, J. Chem. Soc. Perkin Trans. 1 1990, 611 – 616.
[10] M. Bänziger, J. F. McGarrity, T. Meul, J. Org. Chem. 1993, 58,
4010 – 4012.
[11] U. Schmidt, B. Riedl, G. Haas, H. Griesser, A. Vetter, S.
Weinbrenner, Synthesis 1993, 216 – 220.
[12] R. E. Babine, S. L. Bender, Chem. Rev. 1997, 97, 1359 – 1472.
[13] H. Umezawa, T. Aoyagi, H. Morishima, M. Matsuzaki, M.
Hamada, T. Takeuchi, J. Antibiot. 1970, 23, 259 – 262.
[14] D. J. Maly, L. Huang, J. A. Ellman, ChemBioChem 2002, 3, 16 –
37.
[15] L. Rꢁgheimer, Ber. Dtsch. Chem. 1888, 21, 3325– 3331.
[16] S. Kobayashi, L. L. Bryant, Jr., Y. Tsukamoto, T. Saegusa,
Macromolecules 1986, 19, 1547 – 1551.
[17] J. J. Leban, K. L. Colson, J. Org. Chem. 1996, 61, 228 – 231.
[18] C. Pothion, J. A. Fehrentz, A. Aumelas, A. Loffet, J. Martinez,
Tetrahedron Lett. 1996, 37, 1027 – 1030.
[19] C. J. Dinsmore, D. C. Beshore, Tetrahedron 2002, 58, 3297 – 3312.
[20] P. M. Fischer, J. Pept. Sci. 2003, 9, 9 – 35 .
[21] G. Barany, F. Albericio, J. Am. Chem. Soc. 1985, 107, 4936 – 4942.
[22] C. Alcaraz, M. Dolores Fernandez, M. Pilar de Frutos, J. L.
Marco, M. BernabØ, C. Foces-Foces, F. H. Cano, Tetrahedron
1994, 50, 12443 – 12456.
[23] M. Oba, T. Terauchi, Y. Owari, Y. Imai, I. Motoyama, K.
Nishiyama, J. Chem. Soc. Perkin Trans. 1 1998, 1275– 1281.
[24] Details are given in the Supporting Information.
[25] R. Schobert, J. M. Urbina-Gonzalez, Tetrahedron Lett. 2005, 46,
3657 – 3660.
Scheme 3. Claisen-like rearrangement: a) KOH, allyl bromide, DMSO,
60%; b) microwave, toluene/DMSO, 1708C, 30 min, 69%.[25] DMSO=
dimethyl sulfoxide.
rangement were both found to be completely diastereoselec-
tive reactions. The diastereoselectivity of the sigmatropic
rearrangement depends on the structural parameters of the
Zimmermann–Traxler chairlike transition state.
In summary, we have developed an efficient, mild, and
exceptionally stereoselective synthesis of dissymmetric pyr-
rolidine-2,4-diones from DKPs with a high potential for
structural diversity. The transannular rearrangement of
activated lactams, with or without concomitant alkylation, is
a rare tool for the preparation in a single step of a variety of
functionalized heterocyclic biomolecules with high stereo-
specificity. Further studies will be devoted to the extension of
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7488 –7490