P. Alam et al. / Polyhedron 53 (2013) 286–294
293
energies for the two triplet states, these results seem to be in fair
agreement with the two emission peaks observed in the experi-
mental emission spectra. Unfortunately our calculations, that do
not include spin–orbit corrections, do not allow us to predict the
intensity of these spin-forbidden emission lines in order to explain
the differences observed experimentally. The character of the tran-
sitions from the ground state (S0) to the lowest excited singlet (S1)
and triplet states (T1) has been analyzed by comparing the atomic
Mulliken populations for each fragment in the molecule. The re-
sults, shown in Table 5, indicate a significant MLCT character for
the S0?S1 excitation, which is similar for all three molecules,
although it is interesting to note that the MLCT character is signif-
icantly lower in the case of the complex with an unsaturated car-
bon bridge, namely 2.
The nature of the MLCT character of these transitions can be
easily visualized by plotting the difference between the charge
densities of the two states involved in the transition. In Fig. 8 we
show these difference plots for complex 4. From this representa-
tion, it can be easily seen that the most important charge transfer
in the S0?S1 excitation, responsible for the absorption process, is
between the iridium atom and the two pyridine rings that are di-
rectly coordinated to the central metal atom. From this type of rep-
resentation it is evident that the ancillary phosphine ligands do not
play any significant role in the photophysics involving the low ly-
ing excited states of these complexes.
geometries, crystal data and structural refinement, including se-
lected bond lengths and bond angles for complex 4, are deposited.
Supplementary data associated with this article can be found, in
References
[1] (a) W.-Y. Wong, New Phosphorescent Heavy Metal Complexes for Highly
Efficient Organic-Light Emitting Diodes, Nova Publishers, 2012. p. 299;
(b) M. Mauro, C.-H. Yang, C.-Y. Shin, M. Panigati, C.-H. Chang, G. D’Alfonso, L.
De Cola, Adv. Mater. 24 (2012) 2054;
(c) B. Happ, A. Winter, M.D. Hager, U.S. Schubert, Chem. Soc. Rev. 41 (2012)
2222;
(d) E. Rossi, A. Colombo, C. Dragonetti, D. Roberto, F. Demartin, M. Cocchi, P.
Brulatti, V. Fattori, J.A.G. Williams, Chem. Commun. 48 (2012) 3182;
(e) H. Fu, Y.-M. Cheng, P.-T. Chou, Y. Chi, Mater. Today 14 (2011) 472;
(f) C. Ulbricht, B. Beyer, C. Friebe, A. Winter, U.S. Schubert, Adv. Mater. 21
(2009) 4418;
(g) H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2008;
(h) C. Yang, X. Zhang, H. You, L. Zhu, L. Chen, L. Zhu, Y. Tao, D. Ma, Z. Shuai, J.
Qin, Adv. Funct. Mater. 17 (2007) 651;
(i) Y.-L. Tung, P.-C. Wu, C.-S. Liu, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M.
Peng, G.-H. Lee, Y. Tao, A.J. Carty, C.-F. Shu, F.-I. Wu, Organometallics 23 (2004)
3745.
[2] (a) A.B. Tamayo, B.D. Alleyne, P.I. Djurovich, S. Lamansky, I. Tsyba, N.N. Ho, R.
Bau, M.E. Thompson, J. Am. Chem. Soc. 125 (2003) 7377;
(b) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi,
P.E. Burrows, S.R. Forrest, M.E. Thompson, J. Am. Chem. Soc. 123 (2001) 4304.
[3] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T.
Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem.
Soc. 125 (2003) 12971.
[4] (a) E. Baranoff, S. Suarez, P. Bugnon, C. Barolo, R. Buscaino, R. Scopelliti, L.
Zuppiroli, M. Graetzel, Md.K. Nazeeruddin, Inorg. Chem. 47 (2008) 6575;
(b) J.M. Fernandez-Hernandez, C.-H. Yang, J.I. Beltran, V. Lemaur, F. Polo, R.
Frohlich, J. Cornil, L. De Cola, J. Am. Chem. Soc. 133 (2011) 10543.
[5] (a) S.J. Lee, K.-M. Park, K. Yang, Y. Kang, Inorg. Chem. 48 (2009) 1030;
(b) L. Chen, H. You, C. Yang, D. Ma, J. Qin, Chem. Commun. (2007) 1352;
(b) S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu, C.H.
Chen, Adv. Mater. 17 (2005) 285;
4. Conclusion
The inclusion of a strong
p-acceptor chelating ligand (PPh2) in
Ir(III) 2-phenylpyridyl complexes induces wide shifts of the maxi-
mum emission wavelength (kmax) towards the blue-region of the
spectrum, although kmax remains almost unchanged on changing
the ring size/conjugation in the ancillary ligand. Both photolumi-
nescence experiments and computational calculations support
the nature of the lowest excited state which arises from the admix-
(c) P. Coppo, E.A. Plummer, L.D. Cola, Chem. Commun. (2004) 1774;
(d) C.S.K. Mak, A. Hayer, S.I. Pascu, S.E. Watkins, A.B. Holmes, A. Köhler, R.H.
Friend, Chem. Commun. (2005) 4708;
(e) R. Ragni, E.A. Plummer, K. Brunner, J.W. Hofstraat, F. Babudri, G.M. Farinola,
F. Naso, L.D. Cola, J. Mater. Chem. 16 (2006) 1161.
ture of 3MLCT and 3p p⁄ excitations, with a major contribution
–
from the latter.
[6] (a) C.-H. Lin, Y. Chi, M.-W. Chung, Y.-J. Chen, K.-W. Wang, G.-H. Lee, P.-T. Chou,
W.-Y. Hung, H.-C. Chiu, Dalton Trans. 40 (2011) 1132;
We have shown in this report that these types of complexes
may be synthesized in a more facile, greener way through a MW
irradiation technique. This alternative MW-based synthetic tech-
nique has also been shown to be suitable for the synthesis of other
Ir(III) complexes with different ancillary ligands. This fact hints
MW-based syntheses can be tested to obtain other cyclometallated
Ir(III) complexes, potentially useful in OLED devices, in an expedi-
tive way.
(b) Y. Jian, S. Peng, X. Li, X. Wen, J. He, L. Jiang, Y. Dang, Inorg. Chim. Acta 268
(2011) 37;
(c) Y. Chi, P.-T. Chou, Chem. Soc. Rev. 39 (2010) 638;
(d) J.I. Goldsmith, W.R. Hudson, M.S. Lowry, T.H. Anderson, S. Bernhard, J. Am.
Chem. Soc. 127 (2005) 7502;
(e) J. Li, P.I. Djurovich, B.D. Alleyne, M. Yousufuddin, N.N. Ho, J.C. Thomas, R.C.
Peters, R. Bau, M.E. Thompson, Inorg. Chem. 44 (2005) 1713;
(f) M.S. Lowry, W.R. Hudson, R.A. Pascal Jr., S. Bernhard, J. Am. Chem. Soc. 126
(2004) 14129.
[7] (a) Q-h. Wu, C-h. Wang, X-m. Song, G.-l. Zhang, Chin. J. Chem. Phys. 23 (2010)
355;
(b) K. Saito, N. Matsusue, H. Kanno, Y. Hamada, H. Takahashi, T. Matsumura,
Jpn. J. Appl. Phys. 43 (2004) 2733;
(c) H. Konno, Chem. Lett. 32 (2003) 252.
Acknowledgements
[8] E.C. Constable, C.E. Housecroft, E. Schönhofer, J. Schönle, J.A. Zampese,
Polyhedron 35 (2012) 154.
[9] R.C. Clark, J.S. Reid, Acta Crystallogr., Sect. A 51 (1995) 887.
[10] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[11] (a) F. Neve, M.L. Deda, A. Crispini, A. Bellusci, F. Puntoriero, S. Campagna,
Organometallics 23 (2004) 5856;
(b) L. He, L. Duan, J. Qiao, G. Dong, L. Wang, Y. Qiu, Chem. Mater. 22 (2010)
3535.
[12] (a) C.-L. Lee, R.R. Das, J.-J. Kim, Chem. Mater. 16 (2004) 4642;
(b) Y.-M. Wang, F. Teng, L.-H. Gan, H.-M. Liu, X.-H. Zhang, W.-F. Fu, Y.-S. Wang,
X.-R. Xu, J. Phys. Chem. C 112 (2008) 4743.
We acknowledge the Department of Science and Technology
(DST), Govt. of India (Project No. SR/S1/IC-48/2009), the UGC-spon-
sored Special Assistance Program (F.540/14/DRS/2007, SAP-I),
Spanish Ministerio de Economía
y Competitividad (project
CTQ2011-23862-C02-02), Generalitat de Catalunya (Project
2009SGR-1459) and Ramón y Cajal Program for financial support.
We thank IISER, Mohali for providing us with the NMR facility.
[13] (a) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785;
(b) A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
Appendix A. Supplementary material
[14] (a) P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270;
(b) W.R. Wadt, P.J. Hay, J. Chem. Phys. 82 (1985) 284;
CCDC 885698 contains the supplementary crystallographic data
for complex 4. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: +44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk.
NMR spectra for the complexes synthesized through the conven-
tional and MW routes, absorbance spectra, optimized ground state
(c) P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299;
(d) P.C. Hariharan, J.A. Pople, Mol. Phys. 27 (1974) 209.
[15] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999.
[16] GAUSSIAN 09, Revision A.1, M.J. Frisch et al., GAUSSIAN, Inc., Wallingford CT, 2009.
[17] (a) J.-Y. Hung, Y. Chi, I.-H. Pai, Y.-C. Yu, G.-H. Lee, P.-T. Chou, K.-T. Wong, C.-C.
Chen, C.-C. Wu, Dalton Trans. (2009) 6472;
(b) Y.-C. Chiu, C.-H. Lin, J.-Y. Hung, Y. Chi, Y.-M. Cheng, K.-W. Wang, M.-W.
Chung, G.-H. Lee, P.-T. Chou, Inorg. Chem. 48 (2009) 8164.