The oxidation of â-hydroxy sulfides is the most straightfor-
ward method for the synthesis of â-hydroxy sulfoxides. The
selective oxidation of sulfides to sulfoxides has been a challenge
for many years. Much effort has been devoted to develop a large
number of oxidants to convert sulfides into sulfoxides.8 Aqueous
hydrogen peroxide is an ideal oxidant9 in view of an effective
oxygen content of as high as 47%, and water is the only
theoretical byproduct. These obvious advantages have spurred
the development of useful procedures for H2O2 oxidation of
sulfides.10
A General and Efficient Method for the Selective
Synthesis of â-Hydroxy Sulfides and â-Hydroxy
Sulfoxides Catalyzed by Gallium(III) Triflate
Weike Su,*,†,‡ Jiuxi Chen,‡ Huayue Wu,‡ and Can Jin†
College of Pharmaceutical Sciences, Zhejiang Key Laboratory
of Pharmaceutical Engineering, Zhejiang UniVersity of
Technology, Hangzhou 310014, China, and College of
Chemistry and Materials Science, Wenzhou UniVersity,
Wenzhou 325027, China
Although a variety of catalytic systems have been introduced
for oxidation of sulfides, however, many of these methodologies
are associated with one or more disadvantages such as relatively
long reaction time, environmentally unfriendly catalyst, low
yield, the use of volatile organic solvents, requirement of excess
reagents or catalysts, and harsh reaction conditions. For the
synthesis of â-hydroxy sulfoxides, very little attention was paid
to it.6,11 Due to the importance of these compounds in organic
synthesis, the development of environmentally benign, high-
yielding, and clean approaches for the synthesis of â-hydroxy
sulfides and â-hydroxy sulfoxides is in demand.
ReceiVed January 3, 2007
Metal triflates have advantages of water-tolerance, air-
stability, recoverability of the agent from water, operational
(3) (a) Polshettiwar, V.; Kaushik, M. P. Catal. Commun. 2004, 5, 515.
(b) Amantini, D.; Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. Synlett
2003, 2292. (c) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. J. Org.
Chem. 2003, 68, 8248. (d) Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org.
Chem. 2004, 69, 8780. (e) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro,
L. J. Org. Chem. 2004, 69, 2315. (f) Fringuelli, F.; Pizzo, F.; Tortoioli, S.;
Vaccaro, L. Org. Lett. 2005, 7, 4411. (g) Fringuelli, F.; Pizzo, F.; Tortoioli,
S.; Zuccaccia, C.; Vaccaro, L. Green Chem. 2006, 2, 191. (h) Fringuelli,
F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. AdV. Synth. Catal. 2002, 344, 379
and references therein.
(4) Pironti, V.; Colonna, S. Green Chem. 2005, 7, 43.
(5) Fan, R.-H.; Hou, X.-L. J. Org. Chem. 2003, 68, 726.
(6) (a) Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.;
Samuelsson, B.; Hammarstro¨m, S. J. Am. Chem. Soc. 1980, 102, 1436. (b)
Luly, J. R.; Yi, N.; Soderquist, J.; Stein, H.; Cohen, J.; Perun, T. J.; Plattner,
J. J. J. Med. Chem. 1987, 30, 1609. (c) Conchillo, A.; Camps, F.; Messeguer,
A. J. Org. Chem. 1990, 55, 1728.
Gallium(III) triflate-catalyzed ring opening of epoxides
affords â-hydroxy sulfides with high regioselectivity and
chemoselectivity in high yields (84-97%) under solvent-
free conditions. Additionally, a simple, efficient, and envi-
ronmentally benign one-pot procedure for the synthesis of
â-hydroxy sulfoxides in sole water has been developed for
the first time. The process, promoted by a H2O2-Ga(OTf)3
system, affords â-hydroxy sulfoxides in high yields (81-
94%) and high chemoselectivity without any detectable
overoxidation to â-hydroxy sulfones. The catalyst could be
recovered easily after the reactions and reused without
evident loss of activity.
(7) (a) Carren˜o, M. C.; Pe´rez-Gonza´lez, M.; Ribagorda, M.; Somoza,
AÄ .; Urbano, A. Chem. Commun. 2002, 3052. (b) Broutin, P. E.; Colobert,
F. Org. Lett. 2003, 5, 3281. (c) Pradilla, R. F.; Viso, A.; Castro, S.;
Ferna`ndez, J.; Manzano, P.; Tortosa, M. Tetrahedron 2004, 60, 8171.
(8) (a) Legros, J.; Dehli, J. R.; Bolm, C. AdV. Synth. Catal. 2005, 347,
19. (b) Matteucci, M.; Bhalay, G.; Bradley, M. Org. Lett. 2003, 5, 235. (c)
Schoumacker, S.; Hamelin, O.; Te´ti, S.; Pe´caut, J.; Fontecave, M. J. Org.
Chem. 2005, 70, 301. (d) Baciocchi, E.; Gerini, M. F.; Lapi, A. J. Org.
Chem. 2004, 69, 3586. (e) Koposov, A. Y.; Zhdankin, V. V. Synthesis 2005,
22. (f) Trevisan, V.; Signoretto, M.; Colonna, S.; Pironti, V.; Strukul, G.
Angew. Chem., Int. Ed. 2004, 43, 4097. (g) Iranpoor, N.; Firouzabadi, H.;
Pourali, A. R. Synlett 2004, 347. (h) Legros, J.; Bolm, C. Angew. Chem.,
Int. Ed. 2003, 42, 5487. (i) Karimi, B.; Ghoreishi-Nezhad, M.; Clark, J. H.
Org. Lett. 2005, 7, 625. (j) Legros, J.; Bolm, C. Chem.sEur. J. 2005, 11,
1086. (k) Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R.
Tetrahedron 2001, 57, 2469. (l) Legros, J.; Bolm, C. Angew. Chem., Int.
Ed. 2004, 43, 4225. (m) Linde´n, A. A.; Johansson, M.; Hermanns, N.;
Ba¨ckvall, J.-E. J. Org. Chem. 2006, 71, 3849. (n) Qian, W.-X.; Pei, L.
Synlett 2006, 709. (o) Zeng, Q.-L.; Wang, H.-Q.; Wang, T.-J.; Cai, Y.-M.;
Weng, W.; Zhao, Y.-F. AdV. Synth. Catal. 2005, 347, 1933. (p) Mahamuni,
N. N.; Gogate, P. R.; Pandit, A. B. Ultrason. Sonochem. 2007, 14, 135. (q)
Mba, M.; Prins, L. J.; Licini, G. Org. Lett. 2007, 9, 21. (r) Firouzabadi, H.;
Iranpoor, N.; Jafari, A. A.; Riazymontazer, E. AdV. Synth. Catal. 2006, 348,
434 and references therein.
Epoxides are often used as intermediates in organic synthesis,1
and their reactions with different nucleophiles (e.g., amines,
thiols, alcohols, etc.) have been the subject of extensive studies.2
Thiolysis reaction of epoxides is the most practically and widely
used route for the synthesis of â-hydroxy sulfides. It can be
catalyzed by Lewis acid,3 microwave irradiation,4 or PBu3.5
Recently, we have studied the thiolysis reaction of epoxides in
ionic liquids without any catalyst.13d â-Hydroxy sulfides6 and
â-hydroxy sulfoxides7 are important intermediates in organic
synthesis.
† Zhejiang University of Technology.
‡ Wenzhou University.
(1) (a) Hanson, R. M. Chem. ReV. 1991, 91, 437. (b) Ghosh, A. K.; Wang,
Y. J. Org. Chem. 1999, 64, 2789. (c) Dias, L. C.; de Oliveira, L. G. Org.
Lett. 2001, 3, 3951. (d) Reddy, P. G.; Varghese, B.; Baskaran, S. Org. Lett.
2003, 5, 583. (e) Lepage, O.; Kattnig, E.; Fu¨rstner, A. J. Am. Chem. Soc.
2004, 126, 15970. (f) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A.
L.; Billodeaux, D. R. Acc. Chem. Res. 2004, 37, 836.
(9) Sato, K.; Aoki, M.; Noyori, R. Science 1998, 281, 1646.
(2) (a) Barluenga, J.; Va´zquez-Villa, H.; Ballesteros, A.; Gonza´lez, J.
M. Org. Lett. 2002, 4, 2817. (b) Wu, J.; Xia, H.-G. Green Chem. 2005, 7,
708. (c) Garc´ıa-Delgado, N.; Reddy, K. S.; Sola`, L.; Riera, A.; Perica`s, M.
A.; Verdaguer, X. J. Org. Chem. 2005, 70, 7426. (d) Azoulay, S.; Manabe,
K.; Kobayashi, S. Org. Lett. 2005, 7, 4593.
(10) (a) See review: Kaczorowska, K.; Kolarska, Z.; Mitkab, K.;
Kowalskia, P. Tetrahedron 2005, 61, 8315. (b) Applications of Hydrogen
Peroxide and DeriVatiVes; Jones, C. W., Ed.; The Royal Society of
Chemistry, 1999. (c) Modern Oxidation Methods; Ba¨ckval, J. E., Ed.; Wiley-
VCH: Weinheim, Germany, 2004; pp 193-211.
10.1021/jo0700124 CCC: $37.00 © 2007 American Chemical Society
Published on Web 05/10/2007
4524
J. Org. Chem. 2007, 72, 4524-4527