Table 3 Scope of the transformationa
may be combined with other types of more temperature-
sensitive functionalizations.
We thank W. R. Thiel and C. van Wullen for help with the
DFT calculations, the Deutsche Forschungsgemeinschaft,
Saltigo GmbH, and NanoKat for funding, and the A. v.
Humboldt Foundation for a scholarship to N. R.
AgOAc: Cu2O:
Ar–H Yield/% Yield/%
Entry
Ar–COOH
1
2
3
4
5
6
7
8
1a 2-MeO–C6H4–COOH
1b 2-NO2–C6H4–COOH
1c 2-NO2-5-MeO–C6H3–COOH 2c
1d 2,4,5-MeO–C6H2–COOH
1e 2,4-MeO–C6H3–COOH
1f 2,6-MeO–C6H3–COOH
1g 2-Br–C6H4–COOH
2a
2b
83
92
88
43
89
87
76
95
76
74
85
89
(91)
71
58
(11)
17
45
(80)
(36)
(76)
(41)
(38)
(14)
249
879
909
—
—
—
0
—
0
—
Notes and references
1 L. J. Gooßen, N. Rodrıguez and K. Gooßen, Angew. Chem., Int.
Ed., 2008, 47, 3100; L. J. Gooßen, K. Gooßen, N. Rodrıguez,
M. Blanchot, C. Linder and B. Zimmermann, Pure Appl. Chem.,
2008, 80, 1725.
2d
2e
2e
2f
2 C. Peschko, C. Winklhofer and W. Steglich, Chem.–Eur. J., 2000,
6, 1147; L. J. Gooßen, G. Deng and L. M. Levy, Science, 2006, 313,
662; P. Forgione, M. C. Brochu, M. St-Onge, K. H. Thesen,
M. D. Bailey and F. Bilodeau, J. Am. Chem. Soc., 2006, 128,
11350; L. J. Gooßen, N. Rodrıguez, B. Melzer, C. Linder, G. Deng
and L. M. Levy, J. Am. Chem. Soc., 2007, 129, 4824; J.-M. Becht,
C. Catala, C. Le Drian and A. Wagner, Org. Lett., 2007, 9, 1781;
L. J. Gooßen, F. Rudolphi, C. Oppel and N. Rodrıguez,
Angew. Chem., Int. Ed., 2008, 47, 3043; L. J. Gooßen,
B. Zimmermann and T. Knauber, Angew. Chem., Int. Ed., 2008,
47, 7103; L. J. Gooßen, N. Rodrıguez and C. Linder, J. Am. Chem.
Soc., 2008, 130, 15248; J. Moon, M. Jeong, H. Nam, J. Ju,
J. H. Moon, H. M. Jung and S. Lee, Org. Lett., 2008, 10, 945.
3 A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem. Soc.,
2002, 124, 11250; A. Maehara, H. Tsurugi, T. Satoh and
M. Miura, Org. Lett., 2008, 10, 1159; P. Hu, J. Kan, W. Su and
M. Hong, Org. Lett., 2009, 11, 2341.
4 Z. Duan, S. Ranjit, P. Zhang and X. Liu, Chem.–Eur. J., 2009, 15,
3666.
5 A. Voutchkova, A. Coplin, N. E. Leadbeater and R. H. Crabtree,
Chem. Commun., 2008, 6312; C. Wang, I. Piel and F. Glorius,
J. Am. Chem. Soc., 2009, 131, 4194.
6 A. F. Shepard, N. R. Winslow and J. R. Johnson, J. Am. Chem.
Soc., 1930, 52, 2083; M. Nilsson, Acta Chem. Scand., 1966, 20, 423;
T. Cohen and R. A. Schambach, J. Am. Chem. Soc., 1970, 92,
3189; A. Cairncross, J. R. Roland, R. M. Henderson and
W. F. Shepard, J. Am. Chem. Soc., 1970, 92, 3187.
1h 2-Br-4,5-MeO–C6H2–COOH 2g
9
1i 2,6-Cl–C6H3–COOH
1j 2,4-Cl–C6H3–COOH
1k 2-Cl–5-NO2–C6H3–COOH
1l 2-MeS(O)2–C6H4–COOH
1m 2-CF3–C6H4–COOH
1n 2-iPrOC(O)–C6H4–COOH
1o 2-Ac–C6H4–COOH
1p 2-CN–C6H4–COOH
1q 4-HO–C6H4–COOH
1r 1-naphthyl–COOH
1s 2-thienyl–COOH
2h
2h
2i
2j
2k
2l
2m
2n
2o
2p
2q
2q
2r
2s
2a
2a
10
11
12
13
14
15
16
17
18
19
20
—
609
(22)9
829
879
—
—
839
(58)9
—
1t 3-thienyl–COOH
21b,c 1u cinnamic acid
—
—
—
809
22c
23d
24d
1v 2-thiopheneglyoxylic acid
1w 3-MeO–C6H4–COOH
1x 4-MeO–C6H4–COOH
a
Reaction conditions: 2 mmol carboxylic acid, 10 mol% AgOAc,
15 mol% K2CO3, 4 mL NMP, 120 1C, 16 h, isolated yields. GC yields
are given in parentheses and were determined using n-tetradecane as
b
c
d
the internal standard. Using 4 mL of DMAC. 140 1C. 160 1C.
7 J. Chodowska-Palicka and M. Nilsson, Acta Chem. Scand., 1970,
24, 3353.
8 H. Gilman and G. F. Wright, J. Am. Chem. Soc., 1933, 55, 3302.
9 L. J. Gooßen, W. R. Thiel, N. Rodrıguez, C. Linder and B. Melzer,
Adv. Synth. Catal., 2007, 349, 2241; L. J. Gooßen, F. Manjolinho,
B. A. Khan and N. Rodrıguez, J. Org. Chem., 2009, 74, 2620.
10 J. S. Dickstein, C. A. Mulrooney, E. M. O’Brien, B. J. Morgan and
M. C. Kozlowski, Org. Lett., 2007, 9, 2441.
Scheme 2 Ag/Pd-catalysed decarboxylative biaryl synthesis.
11 For acid mediated decarboxylations of such compounds, see:
R. W. Hay and M. J. Taylor, Chem. Commun., 1996, 525b.
12 For an independently developed silver-based protodecarboxylation
see: J. Cornella, C. Sanchez, D. Banawa and I. Larrosa,
Chem. Commun., 2009, DOI: 10.1039/b916646g.
13 See in comparison: N. R. Gunawardena and T. B. Brill, J. Phys.
Chem. A, 2001, 105, 1876; J. Li and T. B. Brill, J. Phys. Chem. A,
2003, 107, 2667; M. Staikova and D. J. Donaldson, J. Phys. Chem. A,
2005, 109, 597.
2-methoxybenzoic, 2-halobenzoic, and heteroarenecarboxylic
acids. At a more elevated temperature of 140 1C, an even wider
range of carboxylates can be converted, e.g. a-oxocarboxylic
acids and cinnamic acid, and above 160 1C, turnover is
achieved even for some meta- and para-substituted
benzoic acids.
The new decarboxylation catalyst is likely to open up
entirely new opportunities for low-temperature decarboxylative
cross-couplings. In a first test reaction at 120 1C, we observed
a 71% yield in the reaction of 2-nitrobenzoic acid with 4-tolyl
triflate using a non-optimized catalyst system consisting of
5 mol% of silver carbonate, 3 mol% of PdCl2 and 9 mol% of
PPh3 (Scheme 2). Having thus achieved a reduction in the
temperature by 50 1C also for decarboxylative cross-couplings,
we are optimistic that after careful adjustments in the Pd
co-catalyst, an effective, generally applicable, low-temperature
decarboxylative cross-coupling is in close reach.
14 GAUSSIAN 03, Revision E.01, Gaussian, Inc., Wallingford CT,
2004; for full citation see the ESIw.
15 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter
Mater. Phys., 1988, 37, 785; A. D. Becke, J. Chem. Phys., 1993, 98,
5648; P. J. Stephens, J. F. Devlin, C. F. Chabalowski and
M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
16 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem.
Phys., 1980, 72, 650.
17 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
18 M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987,
86, 866; D. Andrae, U. Haußermann, M. Dolg, H. Stoll and
H. Preuss, Theor. Chim. Acta, 1990, 77, 123.
19 M. W. Wong, Chem. Phys. Lett., 1996, 256, 391.
20 For related silver-mediated protodecarboxylation see: J. M. Anderson
and J. K. Kochi, J. Am. Chem. Soc., 1970, 92, 1651; J. M. Anderson
and J. K. Kochi, J. Org. Chem., 1970, 35, 986.
Moreover, now that aryl nucleophiles are accessible from
carboxylic acids at such low temperatures, their generation
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 7173–7175 | 7175