Biochemistry
Article
(11) Fleming, S. M., Robertson, T. A., Langley, G. J., and Bugg, T. D.
(2000) Catalytic mechanism of a C-C hydrolase enzyme: Evidence for
a gem-diol intermediate, not an acyl enzyme. Biochemistry 39, 1522−
1531.
(12) Li, J. J., Li, C., Blindauer, C. A., and Bugg, T. D. (2006)
Evidence for a gem-diol reaction intermediate in bacterial C-C
hydrolase enzymes BphD and MhpC from 13C NMR spectroscopy.
Biochemistry 45, 12461−12469.
(13) Horsman, G. P., Ke, J., Dai, S., Seah, S. Y., Bolin, J. T., and Eltis,
L. D. (2006) Kinetic and structural insight into the mechanism of
BphD, a C-C bond hydrolase from the biphenyl degradation pathway.
Biochemistry 45, 11071−11086.
(14) Li, C., Li, J. J., Montgomery, M. G., Wood, S. P., and Bugg, T. D.
(2006) Catalytic role for arginine 188 in the C-C hydrolase catalytic
mechanism for Escherichia coli MhpC and Burkholderia xenovorans
LB400 BphD. Biochemistry 45, 12470−12479.
(15) Lam, W. W., and Bugg, T. D. (1997) Purification, character-
ization, and stereochemical analysis of a C-C hydrolase: 2-Hydroxy-6-
keto-nona-2,4-diene-1,9-dioic acid 5,6-hydrolase. Biochemistry 36,
12242−12251.
(16) Henderson, I. M., and Bugg, T. D. (1997) Pre-steady-state
kinetic analysis of 2-hydroxy-6-keto-nona-2,4-diene-1,9-dioic acid 5,6-
hydrolase: Kinetic evidence for enol/keto tautomerization. Biochem-
istry 36, 12252−12258.
(17) Horsman, G. P., Bhowmik, S., Seah, S. Y., Kumar, P., Bolin, J. T.,
and Eltis, L. D. (2007) The tautomeric half-reaction of BphD, a C-C
bond hydrolase. Kinetic and structural evidence supporting a key role
for histidine 265 of the catalytic triad. J. Biol. Chem. 282, 19894−
19904.
(18) Li, C., Montgomery, M. G., Mohammed, F., Li, J. J., Wood, S. P.,
and Bugg, T. D. (2005) Catalytic mechanism of C-C hydrolase MhpC
from Escherichia coli: Kinetic analysis of His263 and Ser110 site-
directed mutants. J. Mol. Biol. 346, 241−251.
(19) Li, J. J., and Bugg, T. D. (2007) Investigation of a general base
mechanism for ester hydrolysis in C-C hydrolase enzymes of the α/β-
hydrolase superfamily: A novel mechanism for the serine catalytic
triad. Org. Biomol. Chem. 5, 507−513.
(20) Li, C., Hassler, M., and Bugg, T. D. (2008) Catalytic
promiscuity in the α/β-hydrolase superfamily: Hydroxamic acid
formation, C−C bond formation, ester and thioester hydrolysis in
the C−C hydrolase family. ChemBioChem 9, 71−76.
(21) Zhou, H., Qu, Y., Kong, C., Wu, Y., Zhu, K., Yang, J., and Zhou,
J. (2012) Promiscuous esterase activities of the C-C hydrolases from
Dyella ginsengisoli. Biotechnol. Lett. 34, 1107−1113.
(22) Seah, S. Y., Terracina, G., Bolin, J. T., Riebel, P., Snieckus, V.,
and Eltis, L. D. (1998) Purification and preliminary characterization of
a serine hydrolase involved in the microbial degradation of
polychlorinated biphenyls. J. Biol. Chem. 273, 22943−22949.
(23) Cornish-Bowden, A. (1995) Analysis of enzyme kinetic data,
Oxford University Press, New York.
(24) Li, J., Szittner, R., Derewenda, Z. S., and Meighen, E. A. (1996)
Conversion of serine-114 to cysteine-114 and the role of the active site
nucleophile in acyl transfer by myristoyl-ACP thioesterase from Vibrio
harveyi. Biochemistry 35, 9967−9973.
(25) Nazi, I., and Wright, G. D. (2005) Catalytic mechanism of
fungal homoserine transacetylase. Biochemistry 44, 13560−13566.
(26) Bhowmik, S., Horsman, G. P., Bolin, J. T., and Eltis, L. D.
(2007) The molecular basis for inhibition of BphD, a C-C bond
hydrolase involved in polychlorinated biphenyls degradation: Large 3-
substituents prevent tautomerization. J. Biol. Chem. 282, 36377−
36385.
(27) Fastrez, J., and Fersht, A. R. (1973) Demonstration of the acyl-
enzyme mechanism for the hydrolysis of peptides and anilides by
chymotrypsin. Biochemistry 12, 2025−2034.
AUTHOR INFORMATION
■
Corresponding Author
*Address: 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada. Telephone: (604) 822-0042.
Present Address
†Department of Chemistry, Wilfrid Laurier University, Water-
loo, Ontario, Canada.
Funding
A.C.R. is a recipient of a studentship from the National Science
and Engineering Research Council (NSERC) of Canada. This
work was supported by an NSERC Discovery Grant to L.D.E.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Jeffrey T. Bolin for helpful discussion.
ABBREVIATIONS
■
DxnB2, 2,8-dihydroxy-6-oxo-6-phenylhexa-2,4-dienoate 5,6-hy-
drolase; BphD, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate 5,6-
hydrolase; MhpC, 2-hydroxy-6-oxonona-2,4-diene-1,9-dioic
acid 5,6-hydrolase; HOPDA, 2-hydroxy-6-oxo-6-phenylhexa-
2,4-dienoate; pNPB, p-nitrophenyl benzoate; pNP, p-nitro-
phenol; v0, initial velocity; sKIE, solvent kinetic isotope effect.
REFERENCES
■
(1) Seah, S. Y., Labbe, G., Nerdinger, S., Johnson, M. R., Snieckus, V.,
and Eltis, L. D. (2000) Identification of a serine hydrolase as a key
determinant in the microbial degradation of polychlorinated biphenyls.
J. Biol. Chem. 275, 15701−15708.
(2) Rengarajan, J., Bloom, B. R., and Rubin, E. J. (2005) Genome-
wide requirements for Mycobacterium tuberculosis adaptation and
survival in macrophages. Proc. Natl. Acad. Sci. U.S.A. 102, 8327−8332.
(3) Ruzzini, A. C., Ghosh, S., Horsman, G. P., Foster, L. J., Bolin, J.
T., and Eltis, L. D. (2012) Identification of an Acyl-Enzyme
Intermediate in a meta-Cleavage Product Hydrolase Reveals the
Versatility of the Catalytic Triad. J. Am. Chem. Soc. 134, 4615−4624.
(4) Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F.,
Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., et al.
(1992) The α/β-hydrolase fold. Protein Eng. 5, 197−211.
(5) Nardini, M., and Dijkstra, B. W. (1999) α/β-Hydrolase fold
enzymes: The family keeps growing. Curr. Opin. Struct. Biol. 9, 732−
737.
(6) Jiang, Y., Morley, K. L., Schrag, J. D., and Kazlauskas, R. J. (2011)
Different active-site loop orientation in serine hydrolases versus
acyltransferases. ChemBioChem 12, 768−776.
(7) Holmquist, M. (2000) α/β-Hydrolase fold enzymes: Structures,
functions and mechanisms. Curr. Protein Pept. Sci. 1, 209−235.
(8) Gruber, K., Gartler, G., Krammer, B., Schwab, H., and Kratky, C.
(2004) Reaction mechanism of hydroxynitrile lyases of the α/β-
hydrolase superfamily: The three-dimensional structure of the
transient enzyme-substrate complex certifies the crucial role of
Lys236. J. Biol. Chem. 279, 20501−20510.
(9) Frerichs-Deeken, U., Ranguelova, K., Kappl, R., Huttermann, J.,
and Fetzner, S. (2004) Dioxygenases without requirement for
cofactors and their chemical model reaction: Compulsory order
ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-
dioxygenase involving general base catalysis by histidine 251 and
single-electron oxidation of the substrate dianion. Biochemistry 43,
14485−14499.
(10) Larsen, N. A., Lin, H., Wei, R., Fischbach, M. A., and Walsh, C.
T. (2006) Structural characterization of enterobactin hydrolase IroE.
Biochemistry 45, 10184−10190.
(28) Ostrowski, W., and Barnard, E. A. (1973) Evidence for a
phosphoryl-enzyme intermediate in the catalytic reaction of prostatic
acid phosphatase. Biochemistry 12, 3893−3898.
(29) Padhi, S. K., Fujii, R., Legatt, G. A., Fossum, S. L., Berchtold, R.,
and Kazlauskas, R. J. (2010) Switching from an esterase to a
5839
dx.doi.org/10.1021/bi300663r | Biochemistry 2012, 51, 5831−5840