910
M. NISHIMOTO et al.
127: Evidence from detailed kinetic studies of mutants.
Biochemistry, 33, 6371–6376 (1994).
aryl-xylobiosides. J. Biosci. Bioeng., 93, 428–430
(2002).
10) Tull, D., Withers, S. G., Gilkes, N. R., Kilburn, D. G.,
Warren, R. A., and Aebersold, R., Glutamic acid 274 is
the nucleophile in the active site of a ‘‘retaining’’
exoglucanase from Cellulomonas fimi. J. Biol. Chem.,
266, 15621–15625 (1991).
11) Charnock, S. J., Spurway, T. D., Xie, H., Beylot, M. H.,
Virden, R., Warren, R. A., Hazlewood, G. P., and
Gilbert, H. J., The topology of the substrate binding
clefts of glycosyl hydrolase family 10 xylanases are not
conserved. J. Biol. Chem., 273, 32187–32199 (1998).
12) Lo Leggio, L., Jenkins, J., Harris, G. W., and Pickersgill,
R. W., X-ray crystallographic study of xylopentaose
binding to Pseudomonas fluorescens xylanase A. Pro-
teins, 41, 362–373 (2000).
21) Ke, S. H., and Madison, E. L., Rapid and efficient site-
directed mutagenesis by single-tube ‘megaprimer’ PCR
method. Nucleic Acids Res., 25, 3371–3372 (1997).
22) Laemmli, U. K., Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature,
227, 680–685 (1970).
23) Gill, S. C., and von Hippel, P. H., Calculation of protein
extinction coefficients from amino acid sequence data.
Anal. Biochem., 182, 319–326 (1989).
24) Kitaoka, M., Haga, K., Kashiwagi, Y., Sasaki, T.,
Taniguchi, H., and Kusakabe, I., Kinetic studies on p-
nitrophenyl-cellobioside hydrolyzing xylanse from Cell-
vibrio gilvus. Biosci. Biotechnol. Biochem., 57, 1987–
1989 (1993).
13) Ducros, V., Charnock, S. J., Derewenda, U., Derewenda,
Z. S., Dauter, Z., Dupont, C., Shareck, F., Morosoli, R.,
Kluepfel, D., and Davies, G. J., Substrate specificity in
glycoside hydrolase family 10. Structural and kinetic
analysis of the Streptomyces lividans xylanase 10A.
J. Biol. Chem., 275, 23020–23026 (2000).
14) Andrews, S. R., Charnock, S. J., Lakey, J. H., Davies,
G. J., Claeyssens, M., Nerinckx, W., Underwood, M.,
Sinnott, M. L., Warren, R. A., and Gilbert, H. J.,
Substrate specificity in glycoside hydrolase family 10.
Tyrosine 87 and leucine 314 play a pivotal role in
discriminating between glucose and xylose binding in
the proximal active site of Pseudomonas cellulosa
xylanase 10A. J. Biol. Chem., 275, 23027–23033 (2000).
15) Pell, G., Szabo, L., Charnock, S. J., Xie, H., Gloster,
T. M., Davies, G. J., and Gilbert, H. J., Structural and
biochemical analysis of Cellvibrio japonicus xylanase
10C: How variation in substrate-binding cleft influences
the catalytic profile of family GH-10 xylanases. J. Biol.
Chem., 279, 11777–11788 (2004).
16) Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H.,
Kusakabe, I., and Mizuno, H., Crystal structures of
decorated xylooligosaccharides bound to a family 10
xylanase from Streptomyces olivaceoviridis E-86. J.
Biol. Chem., 279, 9606–9614 (2004).
17) Pell, G., Taylor, E. J., Gloster, T. M., Turkenburg, J. P.,
Fontes, C. M., Ferreira, L. M., Nagy, T., Clark, S. J.,
Davies, G. J., and Gilbert, H. J., The mechanisms by
which family 10 glycoside hydrolases bind decorated
substrates. J. Biol. Chem., 279, 9597–9605 (2004).
18) Lo Leggio, L., Kalogiannis, S., Eckert, K., Teixeira,
S. C. M., Bhat, M. K., Andrei, C., Pickersgill, R. W., and
Larsen, S., Substrate specificity and subsite mobility in
T. aurantiacus xylanase 10A. FEBS Lett., 509, 303–308
(2001).
25) Waffenschmidt, S., and Jaenicke, L., Assay of reducing
sugars in the nanomole range with 2,20-bicinchoninate.
Anal. Biochem., 165, 337–340 (1987).
26) Honda, Y., Kitaoka, M., Sakka, K., Ohmiya, K., and
Hayashi, K., An investigation of the pH-activity rela-
tionships of Cex, a family 10 xylanase from Cellulomo-
nas fimi: Xylan inhibition and the influence of the nitro-
substituted aryl-ꢀ-D-xylobiosides. J. Biosci. Bioeng., 93,
313–317 (2002).
27) Dixon, M., The effect of pH on the affinities of enzymes
for substrates and inhibitors. Biochem. J., 55, 161–170
(1953).
28) Leatherbarrow, R. J., Using linear and non-linear
regression to fit biochemical data. Trends Biochem.
Sci., 15, 455–458 (1990).
29) Guex, N., and Peitsch, M. C., SWISS-MODEL and the
Swiss-PdbViewer: An environment for comparative
protein modeling. Electrophoresis, 18, 2714–2723
(1997).
30) Teplitsky, A., Mechaly, A., Stojanoff, V., Sainz, G.,
Golan, G., Feinberg, H., Gilboa, R., Reiland, V.,
Zolotnitsky, G., Shallom, D., Thompson, A., Shoham,
Y., and Shoham, G., Structure determination of the
extracellular xylanase from Geobacillus stearothermo-
philus by selenomethionyl MAD phasing. Acta Crystal-
logr. D Biol. Crystallogr., 60, 836–848 (2004).
31) Charnock, S. J., Spurway, T. D., Xie, H., Beylot, M. H.,
Virden, R., Warren, R. A., Hazlewood, G. P., and
Gilbert, H. J., The topology of the substrate binding
clefts of glycosyl hydrolase family 10 xylanases are not
conserved. J. Biol. Chem., 273, 32187–32199 (1998).
32) Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D.,
and Dupont, C., Characterization of active-site aromatic
residues in xylanase A from Streptomyces lividans.
Protein Eng., 12, 251–257 (1999).
19) Nishimoto, M., Kitaoka, M., and Hayashi, K., Employ-
ing chimeric xylanases to identify regions of an alkaline
xylanase participating in enzyme activity at basic pH.
J. Biosci. Bioeng., 94, 395–400 (2002).
20) Nishimoto, M., Honda, Y., Kitaoka, M., and Hayashi, K.,
A kinetic study on pH-activity relationship of XynA
from alkaliphilic Bacillus halodurans C-125 by using
33) Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N.,
Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and
Gilbert, H. J., Key residues in subsite F play a critical
role in the activity of Pseudomonas fluorescens sub-
species cellulosa xylanase A against xylooligosaccha-
rides but not against highly polymeric substrates such as
xylan. J. Biol. Chem., 272, 2942–2951 (1997).