10.1002/anie.202000054
Angewandte Chemie International Edition
COMMUNICATION
C. M. R. Volla, J.-E. Bäckvall. Angew. Chem. Int. Ed. 2013, 52, 14209–
14213; f) J. Liu, A. Ricke, B. Yang, J.-E. Bäckvall. Angew. Chem. Int.
Ed. 2018, 57, 16842-16846
Keywords: aerobic oxidation • iron • biomimetic oxidation •
homogeneous catalysis • electron transfer
[19] a) S. Y. Jonsson, K. Färnegårdh, J.-E. Bäckvall, J. Am. Chem. Soc.
2001, 123, 1365-1371. b) A. Closson, M. Johansson, J.-E. Bäckvall.
Chem. Commun. 2004, 1494-1495.
[20] For recent work by others on related biomimetic electron transfer
systems see: Pd-catalysis: a) B. Morandi, Z. K. Wickens, R. H. Grubbs.
Angew. Chem. Int. Ed. 2013, 52, 2944–2948 b) C. C. Pattillo, I. I.
Strambeanu, P. Calleja, N. A. Vermeulen, T. Mizuno, M. C. White. J.
Am. Chem. Soc. 2016, 138, 1265–1272; Organocatalysis: c) L. Ta, A.
Axelsson, H. Sunden. Green Chem. 2016, 18, 686–690.
[1]
[2]
Modern Oxidation Methods (Ed.: J.-E. Bäckvall), 2nd Edition, Wiley-
VCH, Weinham, 2010.
a) J. Piera, J.-E. Bäckvall. Angew. Chem Int. Ed. 2008, 47, 3506-3523.
b) S.-I. Murahashi, D. Zhang. Chem. Soc. Rev. 2008, 37, 1490-1501. c)
B. Chen, L. Wang, S. Gao. ACS Catal. 2015, 5, 5851-5876.
D. R. Martin, D. V. Mayushov. Sci. Rep. 2017, 7, 5495.
[3]
[4]
For cross-coupling reactions see: a) M. Nakamura, K. Matsuo, S. Ito, E.
Nakamura. J. Am. Chem. Soc. 2004, 126, 3686-3687. b) G. Cahiez, A.
Moyeux, J. Buendia C. Duplais. J. Am. Chem. Soc. 2007, 129, 13788-
13789. c) A. Fürstner, D. De Souza, L. Parra-Rapado, J. T. Jensen.
Angew. Chem. Int. Ed. 2003, 42, 5358-5360. d) S. N. Kessler, J.-E.
Bäckvall. Angew. Chem. Int. Ed. 2016, 55, 3734–3738. e) S. N.
Kessler, F. Hundemer, J.-E. Bäckvall. ACS Catal. 2016, 6, 7448-7451 f)
A. Piontek, E. Bisz, M. Szostak. Angew. Chem. Int. Ed. 2018, 57,
11116-11128. g) T. Parchomyk, K. Koszinowski. Synthesis, 2017, 49,
3269-3280.
[21] a) S. M. S. Chauhan, A. S. Kandadai, N. Jain, A. Kumar. Chem. Pharm.
Bull, 2003, 51, 1345-1347. b) J. H. Han, S-K. Yoo, J. S. Seo, S. J.
Hong, S. K. Kim, C. Kim. Dalton Trans. 2005, 402-406.
[5]
For transfer hydrogenation reactions see: a) N. S. Shaikh, S. Enthaler,
K. Junge, M. Beller. Angew. Chem. Int. Ed. 2008, 47, 2497-2501. b) B.
K. Langlotz, H. Wadepohl, L. H. Gade. Angew. Chem. Int. Ed. 2008, 47,
4670-4674. c) C. Sui-Seng, F. Freutel, A. J. Lough, R. H. Morris.
Angew. Chem. Int. Ed. 2008, 47, 940-943. d) W. Zuo, A. J. Lough, Y. F.
Li, R. H. Morris. Science. 2013, 342, 1080-1083. e) R. A. Farrar-Tobar,
B. Wozniak, A. Savini, S. Hinze, S. Tin, J. G. de Vries. Angew. Chem.
Int. Ed. 2019, 58, 1129-1133. f) M. Espinal-Viguri, S. E. Neale, N. T.
Coles, S. A. Macgregor, R. L. Webster. J. Am. Chem. Soc. 2019, 141,
572-582.
[6]
For books and reviews see: a) Bauer, E. B. Iron Catalysis: Historic
Overview and Current Trends. In Topics in Organometallic Chemistry:
Iron Catalysis II; Bauer, E. B., Ed.; Springer International: Cham
Switzerland, 2015; pp 1−18. b) I. Bauer, H.-J. Knölker. Chem. Rev.
2015, 115, 3170-3387. c) C. Bolm, J. Legros, J. Le Paih, L. Zani.
Chem. Rev. 2004, 104, 6217-6254. d) B. D. Sherry, A. Fꢀrstner. Acc.
Chem. Res. 2008, 41, 1500-1511. e) D. Wei, C. Darcel. Chem. Rev.
2019, 119, 2550-2610.
[7]
[8]
W. Reppe, H. Vetter. Liebigs Ann. Chem. 1953, 582, 133-161.
a) C. P. Casey, H. Guan. J. Am. Chem. Soc. 2007, 129, 5816-5817. b)
C. P. Casey, H. Guan. J. Am. Chem. Soc. 2009, 131, 2499-2507.
H.-J. Knölker. Chem. Rev. 2000, 100, 2941-2961.
[9]
[10] a) H.-J. Knölker, J. Heber, C. H. Mahler. Synlett, 1992, 1002-1004. b)
H.-J. Knölker, J. Heber. Synlett 1993, 924-926
[11] H.-J. Knölker, H. Goesmann, R. Klauss. Angew. Chem. Int. Ed. 1999,
38, 2064-2066.
[12] For reviews on Knölker-type iron catalysts and non-innocent ligands,
see: a) A. Quintard, J. Rodriguez. Angew. Chem. Int. Ed. 2014, 53,
4044-4055. b) R. Khusnutdinova, D. Milstein. Angew. Chem. Int. Ed.
2015, 54, 12236-12273.
[13] a) T. W. Funk, A. R. Mahoney, R. A. Sponenburg, P. Z. Kathryn, D. K.
Kim, E. E. Harrison. Organometallics 2018, 37, 1133-1140. b) M.
Roudier, T. Constantieux, A. Quintard. Chimia 2016, 70, 97-101. c) T.
J. Brown, M. Cumbes, L. J. Diorazio, G. J. Clarkson, M. Wills. J. Org.
Chem. 2017, 82, 10489-10503. d) T. Yan, B. L. Feringa, K. Barta. Nat.
Commun. 2014, 5, 5602. e) S. V. Facchini, M. Cettolin, X. Bai, G.
Casamassima, L. Pignataro, C. Gennari, U. Piarulli. Adv. Synth. Catal.
2018, 360, 1054-1059. f) K. Polidano, B. D. W. Allen, J. M. J. Williams,
L. C. Morill. ACS Catal. 2018, 8, 6440-6445.
[14] a) K. Gustafson, A. Guðmundsson, K. Lewis, J.-E. Bäckvall. Chem.
Eur. J. 2017, 23, 1048-1051. For related work on the DKR of sec-
alcohols see: b) O. El-Sepelgy, N. Alandini, M. Rueping. Angew. Chem.
Int. Ed. 2016, 55, 13602-13605. c) Q. Yang, N. Zhang, M. Liu, S. Zhou.
Tetrahedron Lett. 2017, 58, 2487-2489.
[15] a) K. P. J. Gustafson, A. Guðmundsson, K. Lewis, J.-E. Bäckvall.
Chem. Eur. J. 2017, 23, 1048-1051. b) A. Guðmundsson, K. P. J.
Gustafson, B. K. Mai, B. Yang, F. Himo, J.-E. Bäckvall. ACS Catal.
2018, 8, 12-16. c) A. Guðmundsson, K. P. J. Gustafson, B. K. Mai, V.
Hobiger, F. Himo, J.-E. Bäckvall. ACS Catal. 2019, 9, 1733-1737.
[16] a) M. C. Warner, C. P. Casey, J.-E. Bäckvall. Topics in Organometallic
Chemistry, 2011, 37, 85-125. b) M. C. Warner, J.-E. Bäckvall. Acc.
Chem. Res. 2013, 46, 2545–2555.
[17] a) G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin, J.-E. Bäckvall, J. Org.
Chem. 2002, 67, 1657-1662. b) J. S. M. Samec, A. H. Éll, J.-E.
Bäckvall, Chem. Eur. J. 2005, 11, 2327-2334. c) B. P. Babu, Y. Endo,
J.-E. Bäckvall. Chem. Eur. J. 2012, 18, 11524-11527.
[18] a) J.-E. Bäckvall, A. K. Awasthi, Z. D. Renko. J. Am. Chem. Soc. 1987,
109, 4750-4752. b) J.-E. Bäckvall, R. B. Hopkins, H. Grennberg, M.
Mader, A. K. Awasthi. J. Am. Chem. Soc., 1990, 112, 5160-5166. c) N.
Gigant, J.-E. Bäckvall. Chem. Eur. J. 2013, 19, 10799-10803. d) B. P.
Babu, X. Meng, J.-E-. Bäckvall. Chem. Eur. J. 2013, 19, 4140-4135. e)
This article is protected by copyright. All rights reserved.