Page 3 of 4
ChemComm
3
For the carboxylation of organoboron reagent with CO2, see: (a) K.
investigated under two optimized reaction conditions: Method
A: 10 mol % AgOAc, 15 mol % PPh3, 2 equiv. KOtBu, THF,
Ukai, M. Aoki, J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2006,
128, 8706; (b) J. Takaya, S. Tadami, K. Ukai and N. Iwasawa, Org.
Lett., 2008, 10, 2697; (c) T. Ohishi, M. Nishiura and Z. Hou, Angew.
Chem., Int. Ed., 2008, 47, 5792; (d) H. Ohmiya, M. Tanabe and M.
Sawamura, Org. Lett., 2011, 13, 1086; (e) T. Ohishi, L. Zhang, M.
Nishiura and Z. Hou, Angew. Chem., Int. Ed., 2011, 50, 8114; (f) P.
J. Riss, S. Lu, S. Telu, F. I. Aigbirhio and V. W. Pike, Angew.
Chem., Int. Ed., 2012, 51, 2698.
For the carboxylation of organozinc reagents with CO2, see: (a) H.
Ochiai, M. Jang, K. Hirano, H. Yorimitsu and K. Oshima, Org. Lett.,
2008, 10, 2681; (b) C. S. Yeung and V. M. Dong, J. Am. Chem. Soc.,
2008, 130, 7826; (c) K. Kobayashi and Y. Kondo, Org. Lett., 2009,
11, 2035.
o
20 atm, 70 C, 16 h. Method B: 1 mol % AgOAc, 1.5 mol %
65
70
o
PPh3, 2 equiv. KOtBu, 1,4ꢀdioxane, 20 atm, 100 C, 8 h (Table
5
2). These silver(I) catalytic systems showed high level of
generality and a wide range of functional groups were
tolerated, from electronꢀrich aryl ethers (Table 2, entries 1–3,
and 30) to electronꢀwithdrawn aryltrifluoromethyl, arylnitro, ,
4
arylcyano,
arylaldehyde, arylketone and arylester
10 functionalities (Table 2, entries 13–17, 25–27). Chloro and
trifluoromethyl groups at ortho, meta, and para positions were
all compatible with the reaction conditions (Table 2, entries
8–10, and 13–15). Boronic esters with heteroaromatic
derivatives were also found to be suitable substrates (Table 2,
15 entries 22–24, and 31). Notably, similar to copper catalytic
systems, the silver(I) catalytic system proved applicable for
bromo, iodo, nitro, vinyl and alkynyl substituted
organoboronic esters which are inactive toward rhodium
catalytic systems (Table 2, entries 11, 12, 16, 18 and 28).
20 Another advantage of the presented silver(I) catalytic system
is that AgOAc and PPh3 are all inexpensive and commercially
available, which make it more attractive for the potentially
practical applications.
In summary, we report a simple and efficient AgOAc/PPh3
25 catalyst for the carboxylation of arylboronic esters with CO2.
The catalytic system shows wide functional group
compatibility and a variety of functionalized carboxylic acids
can be obtained in good yield. Efforts on the detailed
mechanism and expansion of this silver catalytic system are
30 currently ongoing in our laboratory.
75
5
6
For the direct carboxylation of electrophile with CO2, see: A. Correa
and R. Martin, J. Am. Chem. Soc., 2009, 131, 15974.
For the hydrocarboxylation of unsaturated compounds with CO2, see:
(a) J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2008, 130, 15254;
(b) C. M. Williams, J. B. Johnson and T. Rovis, J. Am. Chem. Soc.,
2008, 130, 14936; (c) S. Li, W. Yuan and S. Ma, Angew. Chem., Int.
Ed., 2011, 50, 2578; (d) T. Fujihara, T. Xu, K. Semba, J. Terao and
Y. Tsuji, Angew. Chem., Int. Ed., 2011, 50, 523; (e) M. North,
Angew. Chem., Int. Ed., 2009, 48, 4104; (f) Y. Zhang and S. N.
Riduan, Angew. Chem., Int. Ed., 2011, 50, 6210.
For the carboxylation of terminal alkynes with CO2, see: (a) Y.
Fukue, S. Oi and Y. Inoue, J. Chem. Soc., Chem. Commun., 1994,
2091; (b) N. Eghbali, J. Eddy and P. T. Anastas, J. Org. Chem.,
2008, 73, 6932; (c) L. J. Goossen, N. Rodriguez, F. Manjolinho and
P. P. Lange, Adv. Synth. Catal., 2010, 352, 2913; (d) D. Yu and Y.
Zhang, Proc. Natl. Acad. Sci. USA, 2010, 107, 20184; (e) W.ꢀZ.
Zhang, W.ꢀJ. Li, X. Zhang, H. Zhou and X.ꢀB. Lu. Org. Lett., 2010,
21, 4748; (f) D. Yu and Y. Zhang, Green Chem., 2011, 13, 1275; (g)
X. Zhang, W.ꢀZ. Zhang, X. Ren, L.ꢀL. Zhang and X.ꢀB. Lu, Org.
Lett., 2011, 13, 2402.
For the carboxylation of C–H bond with CO2, see: (a) I. I. F.
Boogaerts and S. P. Nolan, J. Am. Chem. Soc., 2010, 132, 8858; (b)
L. Zhang, J. Cheng, T. Ohishi and Z. Hou, Angew. Chem., Int. Ed.,
2010, 49, 8670; (c) I. I. F. Boogaerts, G. C. Fortman, M. R. L.
Catherine and S. P. Nolan, Angew. Chem., Int. Ed., 2010, 49, 8674;
(d) H. Mizuno, J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2011,
133, 1251; (e) D. M. Dalton and T. Rovis, Nat. Chem., 2010, 2, 710;
(f) I. I. F. Boogaerts and S. P. Nolan, Chem. Commun., 2011, 47,
3021; (g) L. Ackermann, Angew. Chem., Int. Ed., 2011, 50, 3842; (h)
B. J. Flowers, R. GautreauꢀService and P. G. Jessop, Adv. Synth.
Catal., 2008, 350, 2947; (i) O. Vechorkin, N. Hirt and X. Hu, Org.
Lett., 2010, 12, 3567.
80
85
7
90
95
8
This work was financially supported by the National
Natural Science Foundation of China (21172026, U1162101),
the National Basic Research Program of China (973Program:
2009CB825300) and the Fundamental Research Funds for the
35 Central Universities (DUT12LK47).
100
105
Notes and references
State Key Laboratory of Fine Chemicals, Dalian University of
Technology, Dalian, 116012, P. R. China.
9
For reviews, see: L. J. Goossen, N. Rodriguez and K. Goossen,
Angew. Chem., Int. Ed., 2008, 47, 3100.
E-mail: zhangwz@dlut.edu.cn, lxb-1999@163.com;
40 Tel:+86 411 8498 6257, Fax: +86 411 8498 6256
† Electronic Supplementary Information (ESI) available: Experimental
procedures, analytical data and copies of NMR spectra. See
DOI: 10.1039/b000000x/
110 10 For reviews on organoboron reagent, see: (a) N. Miyaura, Bull. Chem.
Soc. Jpn., 2008, 81, 1535; (b) A. Suzuki, Angew. Chem., Int. Ed.,
2011, 50, 6722.
11 For reviews on the synthesis of organoboron reagent, see: (a) T.
Ishiyama and N. Miyaura, J. Organomet. Chem., 2003, 680, 3; (b) I.
115
A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and J. F.
Hartwig, Chem. Rev., 2010, 110, 890.
45
50
55
60
1
For reviews, see: (a) J. Louie, Curr. Org. Chem., 2005, 9, 605; (b) M.
Mori, Eur. J. Org. Chem., 2007, 4981; (c) T. Sakakura, J.ꢀC. Choi
and H. Yasuda, Chem. Rev., 2007, 107, 2365; (d) M. Aresta and A.
Dibenedetto, Dalton Trans., 2007, 2975; (e) A. Correa and R.
Martin, Angew. Chem., Int. Ed., 2009, 48, 6201; (f) S. N. Riduan
and Y. Zhang, Dalton Trans., 2010, 39, 3347; (g) A. Behr and G.
Henze, Green Chem., 2011, 13, 25; (h) K. Huang, C.ꢀL. Sun and Z.ꢀ
J. Shi, Chem. Soc. Rev., 2011, 40, 2435; (i) M. Cokoja, C.
Bruckmeier, B. Rieger, W. A. Herrmann and F. E. Kuhn, Angew.
Chem., Int. Ed., 2011, 50, 8510; (j) X.ꢀB. Lu and D. J. Darensbourg,
Chem. Soc. Rev., 2012, 41, 1462; (k) W.ꢀZ. Zhang and X.ꢀB. Lu,
Chin. J. Catal., 2012, 33, 745.
For the carboxylation of organotin reagents with CO2, see: (a) M. Shi
and K. M. Nicholas, J. Am. Chem. Soc., 1997, 119, 5057; (b) R. J.
Franks and K. M. Nicholas, Organometallics, 2000, 19, 1458; (c) R.
Johansson and O. F. Wendt, Dalton Trans., 2007, 488; (d) J.ꢀG. Wu
and N. Hazari, Chem. Commun., 2011, 47, 1069.
12 (a) T, Furuya and T. Ritter, Org. Lett., 2009, 11, 2860; (b) I. B.
Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L.
Sobel and P. S. Baran, J. Am. Chem. Soc., 2010, 132, 13194; (c) H.
M. Wisniewska and E. R. Jarvo, Chem. Sci., 2011, 2, 807; (d) Y.
Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. Del Bel and
P. S. Baran, J. Am. Chem. Soc., 2011, 133, 3292; (e) C. Huang, T.
Liang, S. Harada, E. Lee and T. Ritter, J. Am. Chem. Soc., 2011,
133, 13308.
120
125 13 For examples on silverꢀcatalyzed incorporation of CO2 into other
substrates, see: (a) W. Yamada; Y. Sugawara; H. M. Cheng; T.
Ikeno and T. Yamada, Eur. J. Org. Chem., 2007, 2604. (b) S.
Yoshida; K. Fukui; S. Kikuchi and T. Yamada, J. Am. Chem. Soc.,
2010, 132, 4072.
2
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3