Nano Letters
Letter
plotted the rate constant k as a function of the concentration C
of micelles used, which fits a linear relationship very well,
suggesting that the reaction occurred at the hydrophilic/
hydrophobic interface. The reusability of inorganic micelles was
also investigated. As displayed in Figure 4b, no notable
deactivation of the catalyst was observed with up to ten cycles,
indicating excellent recyclability. Compared with organic
micelles that cannot be recovered, the inorganic micelles are
more promising in practical applications.
(7) Yah, W. O.; Takahara, A.; Lvov, Y. M. J. Am. Chem. Soc. 2012,
34, 1853.
1
(
8) Abbaspourrad, A.; Carroll, N. J.; Kim, S. H.; Weitz, D. A. Adv.
Mater. 2013, 25, 3215.
9) Liang, F. X.; Liu, J. G.; Zhang, C. L.; Qu, X. Z.; Li, J. L.; Yang, Z.
Z. Chem. Commun. 2011, 47, 1231.
(
(
(
10) Li, S. R.; Jiao, X.; Yang, H. Q. Langmuir 2013, 29, 1228.
11) Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M. Adv.
Mater. 2010, 22, 1182.
(12) Li, X. B.; Yang, Y.; Yang, Q. H. J. Mater. Chem. A 2013, 1, 1525.
(13) Bao, J.; He, J.; Zhang, Y.; Yoneyama, Y.; Tsubaki, N. Angew.
Chem., Int. Ed. 2008, 47, 353.
In summary, a unique inorganic micelle with large surface
area and hydrophobic/hydrophilic interface has been devel-
(
14) Yamada, Y.; Tsung, C. K.; Huang, W.; Huo, Z. Y.; Habas, S. E.;
Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. D. Nat. Chem.
011, 3, 372.
15) Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu,
G. Q. Angew. Chem., Int. Ed. 2011, 50, 5947.
16) Fang, X. L.; Liu, S. J.; Zang, J.; Xu, C. F.; Zheng, M. S.; Dong, Q.
F.; Sun, D. H.; Zheng, N. F. Nanoscale 2013, 5, 6908.
17) Guo, S. R.; Gong, J. Y.; Jiang, P.; Wu, M.; Lu, Y.; Yu, S. H. Adv.
oped. By constructing a metal-in-oxide Au@SiO micelle, the
2
surface property of micelles has been carefully characterized.
The as-obtained inorganic micelles showed excellent catalytic
activity in catalyzing bromination of alcohols. As a result of
their rigid structure, inorganic micelles are superior to organic
micelles with respect to their easy separation and high
recyclability. This work suggests that inorganic micelles may
be suitable for selective organic syntheses and potentially even
for industrial applications and demonstrates the value of
translating nanostructure design from organic to inorganic.
2
(
(
(
Funct. Mater. 2008, 18, 872.
(18) Gorelikov, I.; Matsuura, N. Nano Lett. 2008, 8, 369.
(19) Zhang, M.; Wu, Y. P.; Feng, X. Z.; He, X. W.; Chen, L. X.;
Zhang, Y. K. J. Mater. Chem. 2010, 20, 5835.
(
2
(
2
20) Wang, W.; Gu, B. H.; Liang, L. Y.; Hamilton, W. J. Phys. Chem. B
003, 107, 3400.
21) Garcia, N.; Benito, E.; Guzman, J.; Tiemblo, P. J. Am. Chem. Soc.
007, 129, 5052.
22) Grosso, D.; Babonneau, F.; Albouy, P. A.; Amenitsch, H.;
Balkenende, A. R.; Brunet-Bruneau, A.; Rivory. J. Chem Mater 2002,
ASSOCIATED CONTENT
Supporting Information
Detailed experimental procedures and additional data including
■
*
S
(
1
4, 931.
AUTHOR INFORMATION
(23) Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F.
■
*
*
*
Nanoscale 2011, 3, 1632.
24) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.;
Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure. Appl. Chem.
985, 57, 603.
25) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Angew. Chem., Int. Ed.
2006, 45, 813.
26) Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Nano Lett. 2008, 8,
867.
(
1
(
Author Contributions
(
2
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
(27) Nakamura, H.; Matsui, Y. J. Am. Chem. Soc. 1995, 117, 2651.
(28) Lednicer, D. Strategies for Organic Drug Synthesis and Design, 2nd
Notes
ed.; John Wiley & Sons: New York, 2009.
29) Zarghi, A.; Faizi, M.; Shafaghi, B.; Ahadian, A.; Khojastehpoor,
The authors declare no competing financial interest.
(
H. R.; Zanganeh, V.; Tabatabai, S. A.; Shafiee, A. Bioorg. Med. Chem.
Lett. 2005, 15, 3126.
ACKNOWLEDGMENTS
■
(
30) Sharghi, H.; Khalifeh, R.; Doroodmand, M. M. Adv. Synth. Catal.
009, 351, 207.
31) Mohanazadeh, F.; Zolfigol, M. A.; Sedrpoushan, A.; Veisi, H.
Lett. Org. Chem. 2012, 9, 598.
32) Godefroi, E. F.; Van Cutsem, J.; Van der Eycken, C. A. M.;
We thank the financial support from the Dow Chemical
Company through funding for the Core−Shell Catalysis
Project, contract #20120984 to University of California,
Berkeley. J.M.L. is supported as part of the Light-Material
Interactions in Energy Conversion, an Energy Frontier
Research Center funded by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under
Contract DE-SC0001293. We are grateful to Dr. Y. Sure-
ndranath and Dr. E. Gross for helpful discussions.
2
(
(
Janssen, P. A. J. J. Med. Chem. 1969, 12, 784.
(33) Cainelli, G.; Contento, M.; Manescalchi, F.; Plessi, L. Synthesis-
Stuttgart 1983, 306.
(34) Thiel, V.; Brinkhoff, T.; Dickschat, J. S.; Wickel, S.; Grunenberg,
J.; Wagner-Dobler, I.; Simon, M.; Schulz, S. Org. Biomol. Chem. 2010,
8
, 234.
REFERENCES
■
(
1) Fendler, J. H.; Fendler, E. J. Catalysis in Micellar and
Macromolecular Systems; Academic Press: New York, 1975.
(
2) Ruasse, M. F.; Blagoeva, I. B.; Ciri, R.; GarciaRio, L.; Leis, J. R.;
Marques, A.; Mejuto, J.; Monnier, E. Pure Appl. Chem. 1997, 69, 1923.
3) Pileni, M. P. Structure and Reactivity in Reverse Micelles; Elsevier:
Amsterdam, 1989.
4) Schwuger, M. J.; Stickdorn, K.; Schomacker, R. Chem. Rev. 1995,
5, 849.
(
(
9
(
5) Breslow, R. Acc. Chem. Res. 1995, 28, 146.
(
6) Dwars, T.; Paetzold, E.; Oehme, G. Angew. Chem., Int. Ed. 2005,
44, 7174.
3
83
dx.doi.org/10.1021/nl4045372 | Nano Lett. 2014, 14, 379−383