10.1002/chem.201702288
Chemistry - A European Journal
FULL PAPER
sample of at least 100 nanoparticles, which afforded a mean value of 1.3
(0.2) nm. TGA gave the following Pt content: 60.6 % Pt.
Soc. Rev. 2011, 40, 4973-4985. g) Nanomaterials in Catalysis (Eds.: P.
Sherp, K. Philippot), Wiley-VCH Weinheim 2013.
[2]
[3]
a) K. An, G. A. Somorjai, ChemCatChem 2012, 4, 1512-1524. b) D.
González-Gálvez, P. Nolis, K. Philippot, B. Chaudret, P. W. N. M. van
Leeuwen, ACS Catal. 2012, 2, 317-321. c) L. M. Martínez-Prieto, S.
Carenco, C. H. Wu, E. Bonnefille, S. Axnanda, Z. Liu, P. F. Fazzini, K.
Philippot, M. Salmeron, B. Chaudret, ACS Catal. 2014, 4, 3160-3168. d)
L. M. Martínez-Prieto, C. Urbaneja, P. Palma, J. Campora, K. Philippot,
B. Chaudret, Chem. Comm. 2015, 51, 4647-4650.
Pt@LC-IMe: These Pt NPs were prepared as described for Pt@LC-IPr.
[Pt(NBE)3 (150 mg, 0.315 mmol, 1 equiv.), LC-IMe·HI (33.5 mg, 0.063
mmol, 0.2 equiv.) and KOtBu (7.8 mg, 0.069 mmol, 0.22 equiv.)]. The size
of the NPs was measured by TEM on a sample of at least 100
nanoparticles, which afforded a mean value of 1.9 (0.3) nm. TGA gave the
following Pt content: 64.0 % Pt.
a) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014,
510, 485-496. b) N-Heterocyclic Carbenes in Synthesis (Ed.: S. P. Nolan),
Wiley-VCH, New York, 2006. c) N-Heterocyclic Carbenes in Transition
Metal Catalysis (Ed.: F. Glorius), Springer, Berlin, 2007. d) E. A. B.
Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem. Int. Ed. 2007, 46,
2768-2813. e) S. Würtz, F. Glorius, Acc. Chem. Res. 2008, 41, 1523-
1533. f) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122-
3172. g) S. Diez-Gonzalez, N. Marion, S. P. Nolan, Chem. Rev. 2009,
109, 3612-3676. h) T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010,
49, 6940-6952. i) N-Heterocyclic Carbenes in Transition Metal Catalysis
(Ed.: C. S. J. Cazin), Springer, Berlin, 2011.
Hydroboration reactions.
To a Schlenk-tube equipped with a magnetic stirring bar, Pt@LC-IPr
nanoparticles (2 mg, 3%) were added. The nanoparticles were dissolved
in dry n-hexane (1 mL) and phenylacetylene (0.20 mmol, 22 μL, 1.0 eq)
and HBpin (0.24 mmol, 35 μL, 1.2 eq) were added under argon. The
reaction mixture was stirred at RT for 2 h, afterwards filtered over a
whatman-filter and concentrated. The residue was dissolved in deuterated
chloroform and dibromomethane (0.20 mmol, 14 μL, 1.0 eq) was added as
internal standard. The yields of the corresponding isomers were
determined by NMR analysis.
[4]
[5]
a) P. Lara, O. Rivada-Wheelaghan, S. Conejero, R. Poteau, K. Philippot,
B. Chaudret, Angew. Chem. Int. Ed. 2011, 50, 12080-12084. b) P. Lara,
L.M. Martínez-Prieto, M. Roselló-Merino, C. Richter, F. Glorius, S.
Conejero, K. Philippot, B. Chaudret, NanoSO. 2016, 6, 39-45.
a) C. Richter, K. Schaepe, F. Glorius, B. J. Ravoo, Chem. Comm. 2014,
50, 3204-3207. b) L. M. Martínez-Prieto, A. Ferry, L. Rakers, C. Richter,
P. Lecante, K. Philippot, B. Chaudret, F. Glorius, Chem. Commun. 2016,
52, 4768-4771. [2] J. W. Grate, G. C. Frye in Sensors Update, Vol. 2
(Eds.: H. Baltes, W. Göpel, J. Hesse), Wiley-VCH, Weinheim, 1996, pp.
10-20.
The optimization reactions were performed according to the general
procedure. Conversion and product formation were determined using GC-
analysis. In case no full conversion of phenylacetylene occured,
mesitylene (0.20 mmol, 28 μL, 1.0 eq) was added as an internal standard
and the conversion was determined using GC-FID analysis. For the yield
determination dibromomethane (0.20 mmol, 14 μL, 1.0 eq) was added as
internal standard and NMR spectroscopy was performed as analytical tool.
[6]
a) F. Alonso, Y. Moglie, L. Pastor-Pérez, A. Sepfúlveda-Escribano,
ChemCatChem 2014, 6, 857-865. b) A. Grirrane, A. Corma, H. Garcia,
Chem. Eur. J. 2011, 17, 2467-2478. c) V. Liautarda, O. Pascub, C.
Aymonierb, M. Pucheaulta, Catal. Today 2015, 255, 60.
Multiple addition reaction.
According to the general procedure, the catalysis was started. Mesitylene
(0.20 mmol, 1.0 eq, 28 μL) was added as an internal standard. After 2 h,
the starting materials phenylacetylene (0.20 mmol, 22 μL, 1.0 eq) and
HBpin (0.24 mmol, 35 μL, 1.2 eq) were added under argon. This was
repeated in total 4 times. Conversions and yields (of 3) were determined
using GC-FID.
[7]
[8]
a) L. M. Martínez-Prieto, A. Ferry, P. Lara, C. Richter, K. Philippot, F.
Glorius, B. Chaudret, Chem. Eur. J, 2015, 21, 17495-17502.
L. M. Martínez-Prieto, I. Cano, A. Márquez, E. Baquero, S. Tricard, L.
Cusinato, I. del Rosal, R. Poteau, Y. Coppel, K. Philippot, B. Chaudret,
J. Cámpora, P. W. N. M. van Leeuwen, Chem. Sci. 2017, 8, 2931-2941.
R. Van Hardeveld, F. Hartog, Surf. Sci. 1969, 15, 189-230.
[9]
[10] a) A. Rühling, K. Schaepe, L. Rakers, B. Vonhçren, P. Tegeder, B. J.
Ravoo, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 5856-5860.b) L. M.
Martínez-Prieto, E. A. Baquero, G. Pieters, J. C. Flores, E. de Jesús, C.
Nayral, F. Delpech, P. W. N. M. van Leeuwen, G. Lippens, B. Chaudret,
Chem. Commun. 2017, 53, 5850. c) F. Bernardi, J.D. Scholten, G.H.
Fecher, J. Dupont, J. Morais, Chem. Phys. Lett. 2009, 479, 113-116.
Acknowledgements
The authors thank CNRS, UPS-Toulouse, INSA, IDEX/Chaires
d'attractivité l’Université Fédérale Toulouse Midi-Pyrénées and
the Deutsche Forschungsgemeinschaft (SFB 858), for financial
support. We also thank L. Datas for TEM facilities (UMS
Castaing ), S. Cayez for HRTEM micrographs and P. Lecante
(CEMES, CNRS) for WAXS measurements.
[11]
a) F. Dassenoy, K. Philippot, T. O. Ely, C. Amiens, P. Lecante, E.
Snoeck, A. Mosset, M.-J. Casanove, B. Chaudret, New J. Chem., 1998,
22, 703-711. b) S. Kinayyigit, P. Lara, P. Lecante, K. Philippot, B.
Chaudret, Nanoscale 2014, 6, 539-546.
[12]
a) F. Dassenoy, K. Philippot, T. O. Ely, C. Amiens, P. Lecante, E.
Snoeck, A. Mosset, M.-J. Casanove, B. Chaudret, New J. Chem., 1998,
22, 703-711. b) S. Kinayyigit, P. Lara, P. Lecante, K. Philippot, B.
Chaudret, Nanoscale 2014, 6, 539-546.
Keywords: platinum nanoparticles • N-heterocyclic carbenes •
hydroboration of alkynes • influence of the ligand • surface
chemistry
[13] a) F. Novio, K. Philippot, B. Chaudret, Catal. Lett. 2010, 140, 1-7. b) J. S.
Bradley, E. W. Hill, C. Klein, B. Chaudret, A. Duteil, Stud. Surf. Sci. Catal.,
1993, 75, 969-979.
[14] Carr-Purcell-Meiboom-Gill pulse sequence (CPMG) was originally
proposed for the observation of quadrupolar nuclei with broad
resonances (QCPMG) and later adapted for nuclei of spin 1/2 (i.e. 29Si of
silica material and 13C of graphene). See ref: a) J. T. Cheng, P. D. Ellis,
J. Phys. Chem. 1989, 93, 2549-2555. b) J. W. Wiench, V. S. Y. Lin, M.
Pruski, J. Magn. Reson. 2008, 193, 233-242.c) K. J. Harris, Z. E. M.
Reeve, D. Wang, X. Li, X. Sun and G. R. Goward, Chem. Mater., 2015,
27, 3299-3305.
[1]
a) Clusters and Colloids. From Theory to Applications (Ed.: G. Schmid),
VCH, Weinheim, 1994. b) A. Roucoux, J. Schulz, H. Patin, Chem. Rev.
2002, 102, 3757-3778. c) Nanoparticles. From Theory to Application
(Ed.: G. Schmid), Wiley-VCH, Weinheim 2004. d) A. Roucoux, K.
Philippot, in The Handbook of Homogeneous Hydrogenation (Eds.: J. G.
de Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007, 217. e) E. Bayram,
J. C. Linehan, J. L. Fulton, J. A. S. Roberts, N. K. Szymczak, T. D.
Smurthwaite, S. Özkar, M. Balasubramanian, R. G. Finke, J. Am. Chem.
Soc. 2011, 133, 18889-18902. f) A. Balanta, C. Godard, C. Claver, Chem.
[15] The hydrodynamic diameter, DH, of the NPs can be calculated from the
푘훽
푇
diffusion coefficient using the Stokes-Einstein equation: 퐷 = 3휋휂퐷 where
퐻
This article is protected by copyright. All rights reserved.