Organometallics
ARTICLE
organic substrates, if suitable active catalysts are found. Further
research into the preparation of highly active hydrogen transfer
catalysts that may validate the use of glycerol as a suitable
hydrogen source are currently underway in our laboratory.
(8) Gu, Y. L.; Jerome, F. Green Chem. 2010, 12, 1127.
(9) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C.
Angew. Chem., Int. Ed. 2007, 46, 4434.
(10) Wolfson, A.; Litvak, G.; Dlugy, C.; Shotland, Y.; Tavor, D. Ind.
Crop. Prod. 2009, 30, 78.
(11) Armaroli, N.; Balzani, V. Angew. Chem., Int. Ed. 2007, 46, 52.
(12) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem., Int.
Ed. 2007, 46, 7164.
(13) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
(14) Gu, Y.; Azzouzi, A.; Pouilloux, Y.; Jerome, F.; Barrault, J. Green
Chem. 2008, 10, 164.
(15) Soares, R. R.; Simonetti, D. A.; Dumesic, J. A. Angew. Chem., Int.
Ed. 2006, 45, 3982.
(16) Painter, R. M.; Pearson, D. M.; Waymouth, R. M. Angew. Chem.,
Int. Ed. 2010, 49, 9456.
(17) Crabtree, R. H. Organometallics 2011, 30, 17.
(18) Farnetti, E.; Kaspar, J.; Crotti, C. Green Chem. 2009, 11, 704.
(19) Wolfson, A.; Dlugy, C.; Shotland, Y.; Tavor, D. Tetrahedron
Lett. 2009, 50, 5951.
(20) Corberan, R.; Mas-Marza, E.; Peris, E. Eur. J. Inorg. Chem.
2009, 1700.
(21) Azua, A.; Sanz, S.; Peris, E. Chem. Eur. J. 2011, 17, 3963.
(22) Sanz, S.; Azua, A.; Peris, E. Dalton Trans. 2010, 39, 6339.
(23) Sanz, S.; Benitez, M.; Peris, E. Organometallics 2010, 29, 275.
(24) Albrecht, M.; Miecznikowski, J. R.; Samuel, A.; Faller, J. W.;
Crabtree, R. H. Organometallics 2002, 21, 3596.
(25) Azua, A.; Sanz, S.; Peris, E. Organometallics 2010, 29, 3661.
(26) Albrecht, M.; Crabtree, R. H.; Mata, J.; Peris, E. Chem. Commun.
2002, 32.
’ EXPERIMENTAL SECTION
General Procedures. Compounds 1À4 of general formula
[IrI2(AcO)(bis-NHC)] or [Ru(η6-arene)(NHC)CO3] were prepared
according to literature procedures.21,24,25 All other reagents and solvents
were used as received from commercial suppliers. Catalytic experiments
were carried out under aerobic conditions and without solvent pretreat-
ment. NMR spectra were recorded on Varian Innova 300 and 500 MHz
spectrometers. Elemental analyses were carried out with an EA 1108
CHNS-O Carlo Erba analyzer. Electrospray mass spectra (ESI-MS)
were recorded on a Micromass Quatro LC instrument, and nitrogen was
employed as drying and nebulizing gas. Qualitative analyses of the catalytic
reaction products were performed on a GCMS-QP2010 (Shimadzu) gas
chromatograph/mass spectrometer equipped with a Teknokroma
(TRB-5MS, 30 m  0.25 mm  0.25 μm) column. Chemical yields
were determined with a GC-2010 gas chromatograph (Shimadzu)
equipped with a FID and a Teknokroma (TRB-5MS, 30 m  0.25
mm  0.25 μm) column, using anisole as an internal standard and
analytically pure samples or commercial products for the instrument
calibration.
Catalytic Studies. In a typical experiment of transfer hydrogena-
tion using glycerol as hydrogen donor, a capped vessel containing a
stirrer bar was charged with the substrate (0.5 mmol), potassium
hydroxide (0.5 mmol), anisole as internal reference (0.5 mmol), and
catalyst (2.5%) in 0.8 mL of glycerol. The solution was heated to
80À120 °C for the appropriate time. During the reaction monitoring,
yields and conversions were determined by GC chromatography.
Products and intermediates were characterized by GC/MS. Isolated
products were characterized by 1H NMR and 13C NMR after column
chromatography purification using n-hexanes/ethyl acetate mixtures.
(27) Schlaf, M.; Ghosh, P.; Fagan, P. J.; Hauptman, E.; Bullock, R. M.
Adv. Synth. Catal. 2009, 351, 789.
(28) Keinan, E.; Greenspoon, N. J. Am. Chem. Soc. 1986, 108, 7314.
(29) Lee, H. Y.; An, M. Y. Tetrahedron Lett. 2003, 44, 2775.
(30) Neri, G.; Mercadante, L.; Donato, A.; Visco, A. M.; Galvagno, S.
Catal. Lett. 1994, 29, 379.
(31) Bagal, D. B.; Qureshi, Z. S.; Dhake, K. P.; Khan, S. R.; Bhanage,
B. M. Green Chem. 2011, 13, 1490.
(32) Li, X. F.; Li, L. C.; Tang, Y. F.; Zhong, L.; Cun, L. F.; Zhu, J.;
Liao, J.; Deng, J. G. J. Org. Chem. 2010, 75, 2981.
(33) Himeda, Y.; Onozawa-Komatsuzaki, N.; Miyazawa, S.;
Sugihara, H.; Hirose, T.; Kasuga, K. Chem. Eur. J. 2008, 14, 11076.
(34) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 14120.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: eperis@qio.uji.es (E.P.), jmata@qio.uji.ex (J.A.M.). Fax:
(+34) 964728214.
(35) Horn, S.; Gandolfi, C.; Albrecht, M. Eur. J. Inorg. Chem.
2011, 2863.
’ ACKNOWLEDGMENT
We thank the Ministerio de Ciencia e Innovaciꢀon of Spain
(CTQ2008-04460) and Bancaixa (P1.1B2010-02 and P1.1B2008-16)
for financial support. We also thank the “Generalitat Valenciana”
for a fellowship (A.A.). We are grateful to the Serveis Centrals
d’Instrumentaciꢀo Científica (SCIC) of the Universitat Jaume I
for providing us with spectroscopic facilities.
’ REFERENCES
(1) Anastas, P. T.; Warner, J. Green Chemistry: Theory and Practice;
Oxford University Press: Oxford, U.K., 1998.
(2) Brieger, G.; Nestrick, T. J. Chem. Rev. 1974, 74, 567.
(3) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
(4) Hamid, M.; Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal.
2007, 349, 1555.
(5) Samec, J. S. M.; Backvall, J. E.; Andersson, P. G.; Brandt, P. Chem.
Soc. Rev. 2006, 35, 237.
(6) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. 1992,
92, 1051.
(7) Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E. Tetrahedron
Lett. 2010, 51, 3935.
5536
dx.doi.org/10.1021/om200796c |Organometallics 2011, 30, 5532–5536