Griffith and Suriaatmaja
605
3. H.C. Kolb, M.S. van Nieuwenzhe, and K.B. Sharpless. Chem.
Rev. 94, 2483 (1994).
4. W.P. Griffith, B. Reddy, A.G.F. Shoair, M. Suriaatmaja, A.J.P.
White, and D.J. Williams. J. Chem. Soc. Dalton Trans. 2819
(1998).
5. A.J. Bailey and B.R. James. J. Chem. Soc. Chem. Commun.
2343 (1996); J. Chem. Soc. Chem. Commun. 507 (1997).
6. A.J. Bailey, M.G. Bhowon, W.P. Griffith, A.G.F. Shoair, A.J.P.
White, and D.J. Williams. J. Chem. Soc. Dalton Trans. 3245
(1997).
7. P.H.J. Carlsen, T. Katsuki, V.S. Martín, and K.B. Sharpless. J.
Org. Chem. 46, 3936 (1981).
8. W.P. Griffith, A.G. Shoair, and M. Suriaatmaja. Synth.
Commun. 30, 3091 (2000).
9. H.-L. Kwong, C. Sorato, Y. Ogino, H. Chen, and K.B.
Sharpless. Tetrahedron Lett. 31, 2999 (1990).
Spectroscopic data
In general the optimum ruthenium or osmium concentra-
tions for measurements of electronic spectra were ca. 4 ×
10–4 M (see also legends for Figs. 1 and 2. Note that for
Fig. 1(a) the concentration of RuO4 given is approximate
since the solution was made by passing RuO4 vapour into
water). For the less sensitive Raman technique the ruthenium
or osmium concentrations had to be substantially higher: for
cis-[Os(OH)2O4]2– in [Fe(CN)6]3– 0.02 M of the former and
0.6 M of the latter in molar NaOH was used, while for
Raman spectral demonstration of the oxidation of trans-
[OsO2(OH)4]2– to cis-[OsO4(OH)2]2– by [Fe(CN)6]3– in base
the same concentrations were used. For detection of [RuO4]–
in hypochlorite 0.01 M RuCl3·nH2O was used in aqueous
0.3 M hypochlorite. For detection of RuO4 in periodate and
also in bromate, 0.25 M RuCl3·nH2O was used in molar aq
NaIO4 and in 2 M aq NaBrO3, respectively.
10. W.P. Griffith, S.V. Ley, J. Norman, W.P. Griffith, and S.P. Mar-
sden. Synthesis 639 (1994); W.P. Griffith, S.V. Ley, G.P. Whitcombe,
and A.D. White. J. Chem. Soc. Chem. Commun. 1625 (1987).
11. D.G. Lee, Z. Wang, and W.D. Chandler. J. Org. Chem. 57,
3276 (1992).
Instrumentation
Electronic spectra were measured in 1 cm quartz cuvettes
on a PerkinElmer Lambda 2 instrument. Raman spectra were
measured on a PerkinElmer 1760X Fourier Transform
Raman instrument with 1064 nm Nd-YAG excitation with a
power of 2 W, and on a Dilor LabRam Infinity instrument
with 632 nm. He–Ne excitation and 532 nm frequency-
doubled Nd-YAG excitations, as appropriate, each at 5 mW.
12. R.E. Connick and C.R. Hurley. J. Am. Chem. Soc. 74, 5012
(1952).
13. A.J. Bailey, W.P. Griffith, and P.A. Sherwood. Inorg. Chem.
32, 268 (1993).
14. J.L. Woodhead and J.M. Fletcher. J. Chem. Soc. 5039 (1961).
15. W.P. Griffith. J. Chem. Soc. (A), 1663 (1968)
16. A.C. Dengel, R.A. Hudson, and W.P. Griffith. Transition Met.
Chem. (Dordrecht, Neth.), 10, 98 (1985).
17. R.H. Pettit, R. Brist, A. Mullerand, and E. Diemann. Mol.
Phys. 27, 1373 (1974).
18. J.S. Mayell. Ind. Eng. Chem. Prod. Res. Dev. 7, 129 (1968).
19. K.A.K. Lott and M.C.R. Symons. J. Chem. Soc. 973 (1960).
20. A.J. Bailey, L.D. Cother, W.P. Griffith, and D.M. Hankin.
Transition Met. Chem. (Dordrecht, Neth.), 20, 590 (1995).
21. A. Mills and C. Holland. J. Chem. Res. Synop. 368 (1997).
22. T.A. Foglia, P.A. Barr, and A.J. Malloy. J. Am. Oil Chem. Soc.
54, 858A (1977)
23. Y. Sasson, G.D. Zappi, and R. Neumann. J. Org. Chem. 51,
2880 (1986).
24. A. Tenaglia, E. Terranova, and B. Waegell. Tetrahedron Lett.
31, 1157 (1990); Tetrahedron Lett. 30, 5275 (1989).
25. Y.N. Ogibin, A.I. Ilovaiskii, and G.I. Nikishin. Bull. Acad. Sci.
USSR. 99 (1991).
Mass spectra were measured on
a
PerkinElmer
Autosystem instrument with a PerkinElmer stainless-steel
column packed with 5% Carbowax 20M on Chromosorb
(DCMS treated). GC–MS characterization was carried out
on a Micromass Autospec with a Hewlett–Packard 5890 gas
chromatograph and an SGE BPX5 column.
Conclusions
The cis-[Os(OH)2O4]2– – [Fe(CN)6]3– reagent will, in the
presence of acetonitrile, oxidatively dehydrogenate primary
amines to nitriles and oxidise primary alcohols to carboxylic
acids and secondary alcohols to ketones at room tempera-
tures. Ferricyanide is the best co-oxidant while others (per-
sulfate, bromate, hypochlorite) are less effective.
Studies by electronic and Raman spectroscopies of solu-
tions in a wide variety of procedures in the literature using
ruthenium or osmium catalysts with a number of co-oxidants
(hypochlorite, periodate, bromate, iodate, ferricyanide, and
cerium(IV)) were made to identify the nature of the catalyst
or catalyst precursor.
26. H. Orita, T. Hayakawa, and K. Takehira. Bull. Chem. Soc. Jpn.
59, 2637 (1986).
27. J.P. Genet, D. Pons, and S. Jugé. Synth. Commun. 19, 1712
(1989).
28. A.M. El-Hendawy, W.P. Griffith, B. Piggott, and D.J. Wil-
liams. J. Chem. Soc. Dalton Trans. 1983 (1988).
29. A.C. Dengel, A.M. El-Hendawy, W.P. Griffith, S.I. Mostafa,
and D.J. Williams. J. Chem. Soc. Dalton Trans. 3489 (1992).
30. G.I. Rozovskii, Z.A. Porshkute, A.Y. Prokopchik, and P.K.
Norkus. Russ. J. Inorg. Chem. 18, 1432 (1973).
31. D.L. Kamble and S.T. Nandibewoor. J. Phys. Org. Chem. 1,
171 (1998).
Acknowledgements
We thank the University of London Intercollegiate Re-
search Service (ULIRS) for the Raman facilities, Mr. John
Barton for the GC–MS studies, and Johnson Matthey for
loan of ruthenium trichoride and osmium tetroxide.
32. L. Timmanagoudar, G.A. Hiremath, and S.T. Nandibewoor. J.
Ind. Chem. Soc. 74, 296 (1997).
33. J.T. Ayodele. Ghana J. Chem. 2, 57 (1996).
34. D. Singh, S.B. Singh, V.P. Sahay, M. Prasad, and J. Prasad.
Asian J. Chem. 11, 666 (1999).
35. A. Brahmaiah and P. Manikyamba. Oxid. Commun. 22, 228
(1999); Oxid. Commun. 19, 94 (1996); Indian J. Chem. Sect.
A: Inorg. Phys. Theor. Anal. Chem. 34A, 900 (1995).
References
1. A.J. Bailey, W.P. Griffith, S.P. Marsden, A.J.P. White, and D.J.
Williams. J. Chem. Soc. Dalton Trans. 3673 (1998).
2. T. Naota, H. Takaya, and S.I. Murahashi. Chem. Rev. 98, 2599
(1998).
© 2001 NRC Canada