E. Fernández-Mateos, B. Maciá, D. J. Ramón, M. Yus
SHORT COMMUNICATION
[2]
[3]
a) M. Hatano, T. Miyamoto, K. Ishihara, Curr. Org. Chem.
2007, 11, 127–157; b) R. Noyori, M. Kitamura, Angew. Chem.
1991, 103, 34–55; Angew. Chem. Int. Ed. Engl. 1991, 30, 49–69;
c) F. R. Hartley, S. Patai, Carbon-Carbon Bond Formation
Using Organometallic Compounds, Wiley, New York, 1985.
gent PhMgBr to 2-naphthaldehyde proceeded in good yield,
but a low enantioselectivity was observed (Table 5, En-
try 12).
For some examples of the enantioselective addition of Me2Zn,
see: a) M. C. Wang, Q.-J. Zhang, G.-W. Li, Z.-K. Liu, Tetrahe-
dron: Asymmetry 2009, 20, 288–292; b) Y. S. Sokeirik, H. Mori,
M. Omote, K. Sato, A. Tarui, I. Kumadaki, A. Ando, Org.
Lett. 2007, 9, 1927–1929; c) P. G. Cozzi, P. Kotrusz, J. Am.
Chem. Soc. 2006, 128, 4940–4941; d) A. K. Mandal, J. Schnee-
kloth Jr., K. Kuramochi, C. M. Crews, Org. Lett. 2006, 8, 427–
430; e) G. Blay, I. Fernández, V. Hernández-Olmos, A. Marco-
Aleixandre, J. R. Pedro, Tetrahedron: Asymmetry 2005, 16,
1953–1958; f) Y. Kobayashi, A. Fukuda, T. Kimachi, M. Ju-
ichi, Y. Takemoto, Tetrahedron 2005, 61, 2607–2622; g) N.
García-Delgado, M. Fontes, M. A. Pericás, A. Riera, X. Verda-
guer, Tetrahedron: Asymmetry 2004, 15, 2085–2090; h) C. M.
Sprout, M. L. Richmond, C. T. Seto, J. Org. Chem. 2004, 69,
6666–6673; i) P. G. Cozzi, M. Locatelli, Lett. Org. Chem. 2004,
1, 208–211; j) G. B. Jones, R. S. Huber, B. J. Chapman, Tetrahe-
dron: Asymmetry 1997, 8, 1797–1809; k) M. Kitamura, S. Suga,
K. Kawai, R. Noyori, J. Am. Chem. Soc. 1986, 108, 6071–6072.
Conclusions
In conclusion, we have developed an efficient enantiose-
lective catalytic system for the addition of MeMgBr to alde-
hydes. This methodology allows the preparation of the very
versatile optically active methyl carbinol motif in a simple
one-pot procedure by using an economical and commer-
cially available source of the methyl group. A readily avail-
able binaphthyl derivative is used as a chiral ligand and an
excess amount of titanium tetraisopropoxide was found to
be crucial to achieve high enantioselectivities. Moreover, the
addition of longer-chain Grignard reagents to aromatic and
aliphatic aldehydes could be also achieved in high yields
and with high enantioselectivities with the here-presented
catalytic system. Currently, efforts are directed towards the
elucidation of the reaction mechanism.
[4]
For some general reviews on the addition of organozinc rea-
gents to carbonyl compounds, see: a) C. M. Binder, B. Singa-
ram, Org. Prep. Proced. Int. 2011, 43, 139–208; b) D. J. Ramón,
M. Yus, Chem. Rev. 2006, 106, 2126–2208; c) M. Yus, D. J.
Ramón, Pure Appl. Chem. 2005, 77, 2111–2119; d) M. Yus,
D. J. Ramón, Recent Res. Dev. Org. Chem. 2002, 6, 297–378; e)
L. Pu, H.-B. Yu, Chem. Rev. 2001, 757–824.
Experimental Section
General Procedure for the Synthesis of Chiral Alcohols: In a flame-
dried Schlenk tube (Sa,R)-L1 (22.6 mg, 0.06 mmol) was dissolved
in toluene (2.5 mL) and Ti(iPrO)4 (1.33 mL, 15 equiv., 1.5 mmol)
was added to the solution at –40 °C. After 5 min, RMgX
(3.8 equiv., 0.38 mmol) was added, and the mixture was stirred for
10 min before adding the corresponding aldehyde (0.3 mmol). The
reaction mixture was stirred at –40 °C for 4 h and then quenched
with H2O (5 mL) and 2 m HCl (5 mL). The crude was extracted
with EtOAc (3ϫ10 mL), and the combined organic layers were
neutralized with aq. sat. NaHCO3, dried with MgSO4, and concen-
trated in vacuo. The crude product was purified by chromatography
on silica gel to give desired alcohols 2.
[5]
[6]
a) Y. Mata, M. Dièguez, O. Pàmies, S. Woodward, J. Org.
Chem. 2006, 71, 8159–8165; b) K. Biswas, O. Prieto, P. Gold-
smith, S. Woodward, Angew. Chem. 2005, 117, 2272; Angew.
Chem. Int. Ed. 2005, 44, 2232–2234.
a) M. R. Luderer, W. F. Bailey, M. R. Luderer, J. D. Fair, R. J.
Dancer, M. B. Sommer, Tetrahedron: Asymmetry 2009, 20,
981–998; b) H. G. Richey, New Developments: Grignard Rea-
gents, Wiley, Chichester, UK, 2000; c) B. J. Wakefield, Organ-
omagnesium Methods in Organic Synthesis, Academic Press,
San Diego, CA, 1995.
a) K. H. Yong, N. J. Taylor, J. M. Chong, Org. Lett. 2002, 4,
3553–3556; b) B. Weber, D. Seebach, Tetrahedron 1994, 50,
6117–6128; c) M. Nakajima, K. Tomioka, K. Koga, Tetrahe-
dron 1993, 49, 9751–9758; d) B. Weber, D. Seebach, Angew.
Chem. 1992, 104, 96–97; Angew. Chem. Int. Ed. Engl. 1992, 31,
84–86; e) T. Mukaiyama, K. Soai, T. Sato, H. Shimizu, K. Su-
zuki, J. Am. Chem. Soc. 1979, 101, 1455–1460.
a) D. Seebach, L. Behrendt, D. Felix, Angew. Chem. 1991, 103,
991–992; Angew. Chem. Int. Ed. Engl. 1991, 30, 1008–1009; for
the transmetalation of other Grignard reagents into the corre-
sponding zinc compounds, see: b) A. Côté, A. B. Charette, J.
Am. Chem. Soc. 2008, 130, 2771–2773; c) B. Weber, D. Seebach,
Tetrahedron 1994, 50, 7473–7484; d) K. Soai, Y. Kawase, A.
Oshio, J. Chem. Soc. Perkin Trans. 1 1991, 1613–1615.
a) J. Balsells, T. J. Davis, P. Carroll, P. J. Walsh, J. Am. Chem.
Soc. 2002, 124, 10336–10348; b) Y. N. Ito, X. Ariza, A. K.
Beck, A. Bohácˇ, C. Ganter, R. E. Gawley, F. N. M. Kühnle, J.
Tuleja, Y. M. Wang, D. Seebach, Helv. Chim. Acta 1994, 77,
2071–2110; c) R. O. Duthaler, A. Hafner, Chem. Rev. 1992, 92,
807–832.
a) Y. Muramatsu, T. Harada, Angew. Chem. 2008, 120, 1104;
Angew. Chem. Int. Ed. 2008, 47, 1088–1090; b) Y. Muramatsu,
T. Harada, Chem. Eur. J. 2008, 14, 10560–10563.
a) C.-S. Da, J.-R. Wang, X.-G. Yin, X.-Y. Fan, Y. Liu, S.-L.
Yu, Org. Lett. 2009, 11, 5578–5581; b) X.-Y. Fan, Y.-X. Yang,
F.-F. Zhuo, S.-L. Yu, X. Li, Q.-P. Guo, Z.-X. Du, C.-S. Da,
Chem. Eur. J. 2010, 16, 7988–7991; c) Y. Liu, C.-S. Da, S.-L.
Yu, X.-G. Yin, J.-R. Wang, X.-Y. Fan, W.-P. Li, R. Wang, J.
Org. Chem. 2010, 75, 6869–6878.
[7]
[8]
[9]
Supporting Information (see footnote on the first page of this arti-
cle): Synthetic procedures, screening of the titanium sources, copies
1
of the H and 13C NMR spectra, and traces of the GC and HPLC
chromatograms.
Acknowledgments
This work was financially supported by the Spanish Ministerio de
Ciencia
y
Tecnología (Projects CTQ2007-65218/BQU and
CTQ2011-24151), Consolider Ingenio 2010 (CSD2007-00006), and
Generalitat Valenciana (G.V. PROMETEO/2009/039 and
FEDER). Medalchemy is thanked for a gift of chemicals.
[1] For some examples of natural product syntheses with a chiral
methyl carbinol moiety, see: a) F. Cohen, L. E. Overman, J.
Am. Chem. Soc. 2006, 128, 2604–2608; b) G. Sabitha, C. S.
Reddy, J. S. Yadav, Tetrahedron Lett. 2006, 47, 4513–4516; c)
M. S. Scott, C. A. Luckhurst, D. J. Dixon, Org. Lett. 2005, 7,
5813–5816; d) G. Pattenden, D. J. Critcher, M. Remunian, Can.
J. Chem. 2004, 82, 353–365; e) G. B. Jones, M. Guzel, B. J.
Chapman, Tetrahedron: Asymmetry 1998, 9, 901–905; f) S.
Hanessian, Total Synthesis of Natural Products: The Chiron
Approach, Pergamon, Oxford, 1983.
[10]
[11]
6854
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 6851–6855