Organometallics
Note
1
155.80 (d, J = 24.0 Hz). H NMR (600 MHz, CD3OD): δ 9.09 (s,
1H), 8.31 (d, 1H, J = 7.4 Hz), 8.10 (t, 1H, J = 6.5 Hz), 7.85 (t, 1H, J =
7.4 Hz), 7.73 (d, 1H, J = 7.4 Hz), 7.61 (t, 1H, J = 5.8 Hz), 7.16 (d, 1H,
J = 9.0 Hz), 1.44 (d, 9H, J = 14.4 Hz), 1.31 (d, 9H, J = 14.4 Hz),
−18.59 (d, 1H, J = 19.2 Hz). 13C{1H} NMR (150 MHz, CD3OD): δ
206.03 (d, J = 8.1 Hz), 163.18, 158.43, 155.38, 154.61,140.85, 139.59,
127.91, 123.96, 113.56, 111.84 (d, J = 6.2 Hz), 40.48 (d, J = 17.4 Hz),
40.32 (d, J = 23.2 Hz), 29.42 (d, J = 5.6 Hz), 29.05 (d, J = 4.4 Hz).
HRMS (ESI): calcd for C19H27N3OPRu m/z 446.09352 (M − Cl)+,
found 446.09439. Anal. Calcd for C19H27ClN3OPRu: C, 47.45; H,
5.66; N, 8.74. Found: C, 47.19; H, 5.81; N, 8.42.
2010, 46, 8240−8242. (f) Kuriyama, W.; Ino, Y.; Ogata, O.; Sayo, N.;
Saito, T. Adv. Synth. Catal. 2010, 352, 92−96. (g) Ito, M.; Ootsuka, T.;
Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011,
133, 4240−4242. (h) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi,
T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011,
133, 14960−14963. (i) Balaraman, E.; Gunanathan, C.; Zhang, J.;
Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609−614.
(j) Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Organometallics
2011, 30, 5716−5724. (k) Sun, Y.; Koehler, C.; Tan, R.; Annibale, V.
T.; Song, D. Chem. Commun. 2011, 47, 8349−8351. (l) Fogler, E.;
Balaraman, E.; Ben-David, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D.
Organometallics 2011, 30, 3826−3833. (m) Han, Z.; Rong, L.; Wu, J.;
Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041−
13045. (n) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.;
Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process
Res. Dev. 2012, 16, 166−171. (o) Spasyuk, D.; Smith, S.; Gusev, D. G.
Angew. Chem., Int. Ed. 2012, 51, 2772−2775. (p) Spasyuk, D.; Smith,
S.; Gusev, D. G. Angew. Chem., Int. Ed. 2013, 52, 2538−2542.
(6) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456−463.
(7) (a) He, L.-P.; Chen, T.; Xue, D.-X.; Eddaoudi, M.; Huang, K.-W.
J. Organomet. Chem. 2012, 700, 202−206. (b) Chen, T.; He, L.-P.;
Gong, D.; Yang, L.; Miao, X.; Eppinger, J.; Huang, K.-W. Tetrahedron
Lett. 2012, 53, 4409−4412. (c) He, L.-P.; Chen, T.; Gong, D.; Lai, Z.;
Huang, K.-W. Organometallics 2012, 31, 5208−5211. (d) Zeng, G.;
Chen, T.; He, L.; Pinnau, I.; Lai, Z.; Huang, K.-W. Chem. Eur. J. 2012,
18, 15940−15943.
(8) (a) Matsushita, H.; Ishiguro, S.; Ichinose, H.; Izumi, A.; Mizusaki,
S. Chem. Lett. 1985, 731. (b) Shi, L.; Liu, Y.; Liu, Q.; Wei, B.; Zhang,
G. Green Chem. 2012, 14, 1372.
Typical Procedure for the Catalytic Hydrogenation. To a
mixture of 5 (4.8 mg, 0.01 mmol), KOtBu (9 mg, 0.08 mmol), and
toluene (4.0 mL) in a Parr high-pressure reactor was added the ester
(1.0 mmol). The dark red solution was purged with H2 and stirred
under 400 psi of H2 at 120 °C. The products were analyzed by gas
1
chromatography (GC) or H NMR using mesitylene as an internal
standard.
ASSOCIATED CONTENT
* Supporting Information
Text, figures, tables, and a CIF file giving experimental details
and NMR spectra, computational details, and crystallographic
data for 4. This material is available free of charge via the
■
S
AUTHOR INFORMATION
Corresponding Authors
■
(9) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for generous financial support from the King
Abdullah University of Science and Technology. T.C. thanks
the Natural Science Foundation of China (21302170), the
Young Researchers Foundation of Key Laboratory of Advanced
Textile Materials and Manufacturing Technology, Ministry of
Education (2012QN13), and the Science Foundation of
Zhejiang Sci-Tech University (1201839-Y).
̈
D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.
Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009. (b) All structures
were optimized in the gas phase at the M06/BSI level where BSI
represents a basis set with 6-31G(d,p) for non-metal atoms and SDD
for Ru. The energies were then improved by M06/BSII//M06/BSI
single-point calculations with solvent effects accounted for by the
SMD solvent model, using the experimental solvent (toluene). BSII
denotes a basis set with 6-311++G(d,p) for non-metal atoms and SDD
for Ru. All calculations were carried out using the Gaussian 09
program; more details are given in the Supporting Information..
(10) Qu, S.; Dang, Y.; Song, C.; Wen, M.; Huang, K.-W.; Wang, Z.-X.
J. Am. Chem. Soc. 2014, 136, 4974−4991.
REFERENCES
■
(1) (a) Trost, B. M.; Fleming, I. Comprehensive organic synthesis:
selectivity, strategy, and efficiency in modern organic chemistry, 1st ed.;
Pergamon Press: Oxford, England, 1991. (b) Seyden-Penne, J.
Reductions by the alumino- and borohydrides in organic synthesis, 2nd
ed.; Wiley-VCH: New York, 1997.
(2) (a) Liu, K.; Song, C.; Subramani, V. Hydrogen and syngas
production and purification technologies; Wiley and AIChE: Hoboken,
NJ, 2010. (b) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253−278.
(c) Esswein, A. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022−4047.
(d) Hayashi, J. I.; Hosokai, S.; Sonoyama, N. Process Saf. Environ. Prot.
2006, 84, 409−419. (e) Levin, D. B.; Pitt, L.; Love, M. Int. J. Hydrogen
Energy 2003, 29, 173−185.
(3) (a) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718−1741.
(b) Otsuka, T.; Ishii, A.; Dub, P. A.; Ikariya, T. J. Am. Chem. Soc. 2013,
135, 9600−9603.
(4) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem.,
Int. Ed. 2006, 45, 1113−1115.
(5) (a) Clarke, M. L.; Diaz-Valenzuela, M. B.; Slawin, A. M. Z.
Organometallics 2007, 26, 16−19. (b) Saudan, L. A.; Saudan, C.;
Becieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473−7476.
(c) Ito, M.; Ikariya, T. J. Synth. Org. Chem. Jpn. 2008, 66, 1042−1048.
(d) Takebayashi, S.; Bergens, S. H. Organometallics 2009, 28, 2349−
2351. (e) O, W. W. N.; Lough, A. J.; Morris, R. H. Chem. Commun.
D
dx.doi.org/10.1021/om500549t | Organometallics XXXX, XXX, XXX−XXX