F. Shirini et al. / Catalysis Communications 36 (2013) 31–37
37
Table 5
References
Comparison of the results of the acylation of benzyl alcohol catalyzed by RHA-SO3H
with those obtained by some of the other reported catalysts.
[1] T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis, third ed., John
Wiley and Son Inc., New York, 1999, pp. 306–307.
[2] K.S. Kochhar, B.S. Bal, R.P. Deshpande, S.N. Rajadhyaksha, H.W. Pinnick, Journal of
Organic Chemistry 48 (1983) 1765–1767.
Entry Catalyst
Catalyst
loading
Reaction
conditions (min) (%)
Time
Yield Ref.
[3] M. Sandberg, L.K. Sydnes, Tetrahedron Letters 39 (1998) 6361–6364.
[4] J.G. Frick, R.J. Harper, Journal of Applied Polymer Science 29 (1984) 1433–1447.
[5] M.J. Gregory, Journal of the Chemical Society B: Physical Organic (1970) 1201–1207.
[6] N.M. Nagy, M.A. Jakab, J. Konya, S. Antus, Applied Clay Science 21 (2002) 213–216.
[7] D.H. Aggen, J.N. Arnold, P.D. Hayes, N.J. Smoter, R.S. Mohan, Tetrahedron 60
(2004) 3675–3679.
[8] R. Ghosh, S. Maiti, A. Chakraborty, R. Halder, Journal of Molecular Catalysis A:
Chemical 215 (2004) 49–53.
[9] A.R. Hajipour, A. Zarei, A.E. Ruoho, Tetrahedron Letters 48 (2007) 2881–2884.
[10] M.M. Heravi, S. Taheri, K. Bakhtiari, H.A. Oskooie, Monatshefte fur Chemie 137
(2006) 1075–1078.
[11] U.V. Desai, T.S. Thopate, D.M. Pore, P.P. Wadgaonkar, Catalysis Communications 7
(2006) 508–511.
[12] A.T. Khan, L.H. Choudhury, S. Ghosh, Journal of Molecular Catalysis A: Chemical
255 (2006) 230–235.
[13] B.F. Mirjalili, M.A. Zolfigol, A. Bamoniri, M.A. Amrollahi, N. Sheikhan, Russian Journal
of Organic Chemistry 43 (2007) 852–854.
[14] J.R. Satam, R.V. Jayaram, Catalysis Communications 8 (2007) 1414–1420.
1
2
3
4
5
6
7
8
FeCl3
Zn-montmorillonite
In(OTf)3
100 mg
2 g
0.1 mol% r.t./CH2Cl2
100 mg
5 mol%
200 mg
50 mg
43 mg
15 mg
0 °C/neat
r.t./neat
35
24 h
5
45
15
30
2
79
99
95
86
99
84
97
75
90
90
97
84
[2]
[6]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
P2O5/Al2O3
r.t./neat
r.t./neat
r.t./neat
r.t./neat
r.t./neat
r.t./neat
CuSO4.5H2O
Silica Sulfuric Acid
HClO4-SiO2
Al(HSO4)3
5
9
SO42−/SnO2
25
25
5
10
11
12
[Hmim]HSO4
[bmpy]HSO4
silica-bonded
S-sulfonic acid
3.8 mol% r.t./neat
10 mol% r.t./US
5 mg
r.t./neat
4
13
14
saccharin sulfonic acid 50 mg
r.t./neat
r.t./neat
r.t./CH2Cl2
r.t./neat
50
1
4
90
95
50
94
[18]
[20]
[20]
This work
ZSM-5-SO3H
ZSM-5-SO3H
RHA-SO3H
20 mg
20 mg
10 mg
15
0.5
[15] A.R. Hajipour, L. Khazdooz, A.E. Ruoho, Catalysis Communications
89–96.
9 (2008)
[16] S.P. Borikar, T. Daniel, Ultrasonics Sonochemistry 18 (2011) 928–931.
[17] K. Niknam, D. Saberi, M. NouriSefat, Tetrahedron Letters 50 (2009) 4058–4062.
[18] F. Shirini, M. Mamaghani, T. Mostashari-Rad, M. Abedini, Bulletin of the Korean
Chemical Society 31 (2010) 2399–2401.
[19] F. Shirini, O.G. Jolodar, Journal of Molecular Catalysis A: Chemical 356 (2012)
61–69.
[20] A.R. Massah, R.J. Kalbasi, A. Shafiei, Monatshefte fur Chemie 143 (2012) 643–652.
[21] S. Chakraborty, S. Chowdhury, P.D. Saha, Carbohydrate Polymers 86 (2011) 1533.
[22] D.B. Martin, Energy From Rice Residues, Winrock international, Arlington, USA,
1990.
[23] C. Real, M.D. Alcalá, J.M. Criado, Journal of the American Ceramic Society 79 (1996)
2012–2016.
not enough to promote the requested reactions. It is also important to
note that among the reported catalysts the activity and amount of
ZSM-5-SO3H are near to RHA-SO3H. In spite of this similarity the differ-
ence is that the ZSM-5 zeolite was synthesized using various chemical
compounds such as hydrated aluminum sulfate, tetrapropylammonium
bromide, sodium silicate solution and sodium chloride and at high tem-
peratures (110, 230, 540 °C) during a long time (24 h) while RHA can
be prepared from an agricultural residue using a simple experimental
method.
[24] Q. Feng, H. Yamamichi, M. Shoya, S. Sugita, Cement and Concrete Research 34
(2004) 521–526.
[25] P. Chindaprasirt, C. Jaturapitakkul, U. Rattanasak, Fuel 88 (2009) 158–162.
[26] H. Chao-Lung, B.L. Anh-Tuan, C. Chun-Tsun, Construction and Building Materials
25 (2011) 3768–3772.
4. Conclusion
[27] V.C. Srivastava, I.D. Mall, I.M. Mishra, Colloids and Surfaces A: Physicochemical
and Engineering Aspects 312 (2008) 172–184.
[28] M.C. Manique, C.S. Faccini, B. Onorevoli, E.V. Benvenutti, E.B. Caramão, Fuel 92
(2012) 56–61.
[29] D. An, Y. Guo, Y. Zhu, Z. Wang, Chemical Engineering Journal 162 (2010) 509–514.
[30] H.R. Shaterian, M. Ghashang, M. Feyzi, Applied Catalysis A: General 345 (2008)
128–133.
[31] G.A. Habeeb, H.B. Mahmud, Materials Research 13 (2010) 185–190.
[32] F. Shirini, M. Mamaghani, S.V. Atghia, Catalysis Communications 12 (2011) 1088–1094.
[33] J.B. Condon, Surface Area and Porosity Determinations by Physisorption, Elsevier,
2006. (Chapter 1, pp. 1-27).
In conclusion, in the study we have introduced RHA-SO3H a highly
powerful solid acid catalyst for the simple, efficient and chemoselective
acylation of various aldehydes and deprotection of the obtained
1,1-diacetates. All reactions are carried out in very short reaction time.
Furthermore, the methodology has several advantages such as high
reaction rates, no side reactions, ease of preparation and handling of
the catalyst, simple experimental procedure, cleaner reactions, use of
inexpensive and reusable catalyst with lower loading and solvent free
conditions. Further studies on some more practical applications of the
RHA-SO3H catalyst in other organic reactions are currently underway
in our laboratory.
[34] D. Zareyee, B. Karimi, Tetrahedron Letters 48 (2007) 1277–1280.
[35] H. Xing, T. Wang, Z. Zhou, Y. Dai, Journal of Molecular Catalysis A: Chemical 264
(2007) 53–59.
Acknowledgments
We are thankful to the University of Guilan Research Council for
the partial support of this work.